Why High Precision w/ X-Ray FELO Comb ?

Leo Hollberg, Stanford, Physics Dept. HEPL & Stanford Center on Position Navigation and Time

• Precise Frequency domain X-Ray spectroscopy,

quantum state energy measurements, interactions and perturbations

AND

- Time domain including with X-ray phase control
 - X-Ray coherent pumping and probing of:
 - lons
 - nuclear transitions
 - nonlinear spectroscopy multi-transitions in cascades
 - X-Ray + X-Ray and/or X-Ray + optical
 - Nuclear state dependent reactions
 - X-Ray induced nuclear association ?

Optical stabilization of X-Ray Ring Laser

For laser resonator
$$\frac{\Delta l}{l} = \frac{\Delta \omega}{\omega} = \frac{\Delta E}{E} = \frac{\Delta t}{t}$$

Comb spacing f_{rep} = 25 MHz ? X-Ray at 10 keV = 2.4 x 10¹⁸ Hz fractionally = 10⁻¹¹, corresponds to 100 neV

Hydrogen-like Ion Spectroscopy

Enabled by:

- -- frequency stable lasers
- -- fs optical combs
- -- laser cooled atoms

HTRAP at GSI Darmstadt , NIM B 2005

Laser Stabilization at Stanford

• Short time scales: Fabry-Pérot cavity

STANFORD

UNIVERSITY

- Intermediate time scales: optical transitions in vapor cells (Rb, I₂ soon Yb)
- Long time scales: GPS steered quartz (10 MHz) locks fs comb at 200 THz

High resolution opportunities:

- Atomic physics : the best tests of QED at low energy
- nuclear structure (at least average charge radius, perhaps more ... e.g. spin structure?) probed by electronic wavefunction at nucleus.
- 1 and 2 electron atoms calculable from QED
 - highly striped ions
- Ion Traps: EBIT (UC Berkeley, NIST, ...)
- Present discrepancies in H vs muonic H, magnetic moments...
- Nuclear spectroscopy comments:
 - Often don't require absolute calculation of energy to gain structural information
 - Measure multiple levels in same nucleus constrains nuclear structure, measure ratios of frequencies
- Direct X-Ray comb spectroscopy
 - Pulse shaper methods

X-Ray Comb Precision Control of Frequency

- At first glance my view is that f_{ceo} locking most interesting for time domain measurements.
- Without control of f_{ceo} with knowledge of a spectral reference (e.g. atomic transition or Mössbauer line) and f_{rep} control can do high precision spectroscopy.
 - Don't necessarily need reference to Cs definition of the S.I. second
- Can do very high precision spectroscopy and frequency metrology with interferometric and heterodyne methods

X-Ray Phase Coherence for long times open new opportunities

- X-Ray heterodyne methods
 - spectroscopy
 - X-Ray phase sensitive methods
- X-Ray heterodyne spectroscopy

Tools to Enable Precision X-Ray Spectroscopy

- X-Ray modulators
 - Δφ phase modulators
 - mechanical PZT
 - electrical EOM
 - Laser driven X-Ray phase modulator
 - Amplitude e.g. (AOM) → AXM
 - coherent RF driven acoustic
 - phase coherent with X-Ray comb
- X-ray interferometers with phase sensitive readout

Questions

- Question: How much does f_{ceo} change due to normal fluctuations of an XFELO ??
 - Can estimate some factors that determine fceo.
 - Most cases would not need to know or control fceo.
 - Many factors affect cavity dispersion: thermal, gain, power, angles,
 - should be many approaches to control f_{ceo} in XFELO
 - power (pump, cavity loss, inserted thin dispersive wedge, optical heating of diamond, small angle changes, ...).
 Some calculable.