From XUV comb to X-ray comb?

Jun Ye, JILA, NIST & Univ. of Colorado

Spectral width: IR – XUV; Spectral resolution: 10⁻¹⁶

XFELO Workshop, Stanford, June 30, 2016

Optical coherence time > 1 s, anywhere in the visible, Nature Photon. 2, 355 (2008).

Optical coherence time > 1 s, anywhere in the visible, Nature Photon. 2, 355 (2008).

Lessons from XUV comb

How to produce XUV radiation at high repetition frequency? (repetition period << decoherence time)</p>

> How to scale up power of the coherent source for applications ?

How to maintain coherence in the radiation & how to measure/characterize it ?

Coherent VUV and XUV radiation

Harmonic Generation with a single IR pulse - a train of attosecond pulses

Coherent VUV and XUV radiation

Harmonic Generation with a train of IR pulses-The XUV frequency comb is born

Enhancement cavity for HHG

Enhancement cavity for HHG

Typical Intracavity Parameters

200-400 µJ pulse energy 150 MHz repetition rates 2-15 kW average power Preserves repetition rate Recycles unused light "Tight focus" HHG

More power and more sensitivity. Clean, well-defined mode. Interaction length increase by $\frac{F}{\pi}$.

FSR = c/L

$$F = \frac{2\pi}{Loss}$$
Buildup = T $\frac{F^2}{\pi^2}$

Out-coupling the XUV

Pupeza et al. Nat. Phot. (2013) Pupeza et al. PRL (2014)

The XUV laser pointer

	Harmonic	Target parameters	Generated power	Outcoupled power	Photons/s generated
	11 th , 12.7 eV	100 μm, 100 PSI, 4:1 mix	0.7 mW	60 μW	$3.4 \times 10^{14} \gamma/s$
Г	17 th , 19.7 eV	100 μm, 100 PSI, 4:1 mix	0.63 mW	60 μW	$2 \times 10^{14} \gamma/s$
	11 th , 12.7 eV	50 μm, 400 PSI, 4:1 mix	0.84 mW	71 μW	$4 \times 10^{14} \gamma/s$
	11 th , 12.7 eV	50 μm, 275 PSI, 9:1 mix	0.93 mW	78 μW	$4.8 \times 10^{14} \gamma/s$
			DET2 DET1	Au Au SS	arbsity (arb.) (
1.2 x 10 ¹⁷ photons /[s mm² mrad² .1% bandwidth] ½ brightness of the ALS CM DG					
Benko <i>et al.</i> In preparation. 2016 HR IC					

The XUV laser pointer

Power scaling - HHG comparisons

Charting the extreme ultraviolet landscape (Ultrahigh-resolution XUV spectroscopy)

Optical coherence & spectral resolution

Cavity length $L \sim 1 \text{ m} \rightarrow \Delta L \sim 10^{-16} \text{ m}$ (size of a nucleus: 10^{-14} m) This level of optical coherence can be transferred to an optical comb

Coherence test in XUV

Yost *et al.*, Nature Phys. **5**, 815 (2009).

Coherence test in XUV

Yost *et al.*, Nature Phys. **5**, 815 (2009).

XUV frequency comb spectroscopy Cingöz *et al.*, Nature **482**, 68 (2012).

- Scan single tooth of XUV comb across resonance
- Direct fluorescence detection
- Transition linewidth ~10 MHz

XUV frequency comb spectroscopy Cingöz *et al.*, Nature **482**, 68 (2012).

Heterodyne beat of two XUV combs

C. Benko et al., Nature Photon. 8, 530 (2014).

• Direct access to phase of XUV comb & attosecond physics

Heterodyne beat of two XUV combs

C. Benko *et al.,* Nature Photon. **8**, 530 (2014).

• Direct access to phase of XUV comb & attosecond physics

Heterodyne beat of two XUV combs

C. Benko et al., Nature Photon. 8, 530 (2014).

XUV (& other) frequency combs

http://www.nsf.gov/ Discovery -- Combing frequencies

Christoph Heyl, Gil Porat, Stephen Schoun XUV frequency combs for precision measurement, frequency metrology, and strong-field physics.

- Very coherent light from 10 nm 100 nm
- Among highest photon fluxes available on table-top
- "Simple" architecture with room for improvement

I. Hartl, A. Ruehl, M. Fermann, IMRA America

F. Adler (Tiger Optics) **T. Alison** (U. Stony Brook) A. Cingöz (AOSense) A.J. Fleisher (NIST) A. Foltynowicz (Umea U.) S. Foreman (U. San Fran) K. Holman (Lincoln Lab) L. Hua (Chin. Aca. Science) **D. Jones** (U. British Columbia) **R. J. Jones** (U. Arizona) F. Labaye (U. Neuchatel) A. Marian (MPG, Berlin) P. Masłowski (U. Torun) **K. Moll** (Precision Photon.) A. Pe'er (Bar-Ilan U.) **T. Schibli** (U. Colorado) L. Sinclair (NIST) M. Thorpe (Bridge Photon.) **D. Yost** (Colo. State U.)

HHG Seed for XFEL

Gil Porat, Christoph Heyl, Stephen Schoun

- HHG cutoff photon energy scales as λ^2
- HHG efficiency scales as $\lambda^{-6.5}$
- $\lambda = 2\mu m$ driven HHG demonstrated 0.5 keV generation at $f_{rep} = 10$ Hz
- Frequency comb at $\lambda = 2\mu m$ soon to reach ~100 fs pulses at 50 MHz repetition rate with μ J pulse energy

A. D. Shiner et al., Phys. Rev. Lett. 103, 073902 (2009)
M.-C. Chen et al., Phys. Rev. Lett. 105, 173901 (2010)
F. Stutzki et al., Opt. Lett. 39, 4671 (2014)

G. D. Cole et al., Optica 3, 647, (2016)

Bright Ideas in Fiberoptics

Bernard Adams Kwang-je Kim

XFELO

Design example: XFELO for 14.4 keV

Leo Hollberg: High resolution spectroscopy with X-ray comb

If you could... Conventional **Nonlinear Optical** Conventional Comb self-referencing Laser Amplifiers **Optical Comb** Generation Microbunched Eleectrons from XFELO X-ray/Optical X-nay 8 keV Wavemixing DFG Comb is fo free! ARTICLE doi:10.1038/nature11340 Diamond

X-ray and optical wave mixing

T. E. Glover¹, D. M. Fritz², M. Cammarata³, T. K. Allison⁴, Sinisa Coh^{5,6}, J. M. Feldkamp², H. Lemke², D. Zhu², Y. Feng², R. N. Coffee², M. Fuchs⁷, S. Ghimire², J. Chen^{7,8}, S. Shwartz⁸, D. A. Reis^{2,8,9}, S. E. Harris^{5,10} & J. B. Hastings²

Sum (X-nav + optical)

Detec

Anortur

Chris Corder & Tom Allison: X-ray comb carrier-envelope phase?