

A. Madsen, European XFEL, anders.madsen@xfel.eu

2

Jerry said in the mail:

"5-25 keV photon energy range" (great, like European XFEL, but depends on C* reflections)

"3-10 meV bandwidth" (~10⁻⁶ bw, Wow! SASE is 10⁻³. Fantastic possibilities for large NA optics, e.g. MLL, to reach nm focii)

"Full coherence" (transform limited? Then the pulse duration should be $\sim 1 ps - 400 fs$)

"Pulse length 200-500 fs" (OK, so like transform limited)

"10⁸ – 10⁹ ph/pulse" (not so much..)

"1-2 MHz rep rate" (10¹⁴ - 10¹⁵ coherent photons/s, nice...)

European XFEL

Movie mode at MHz rates, defined by XFEL rep rate and detector speed

 Δt can be very small, fs, ps, ns possible. Time encoded in every image.

Experiments can be destructive (diffract & destroy) but not necessarily (CDI).

10¹⁵ coherent photons/s for XPCS. What would it bring?

SNR XPCS \propto $(t_m)^{1/2}$ $\,\times\,$ I_{coherent}

Today: $I \sim 10^{10}$ gives access to ms dynamics XFELO: $I \sim 10^{15}$ would give access to sub-ps dynamics

BUT:

No 2d detectors can run at sub-ps frame rates Pulses only arriving at MHz rate (machine rep rate)

- → traditional XPCS at an XFELO will not bring us further than µs regime where there is competition from MBA SR (single shot damage with XFELO...)
- → ultrafast dynamics studies at an XFELO still requires advanced optical schemes (e.g. split-delay line,...)

XFEL Possibilities for MHz Movie Mode XPCS

XPCS data on DC705, Q=7.5 nm⁻¹

Study of supercooled liquid glass formers at high Q

XPCS in metallic glass at Q=25 nm⁻¹ Ruta et al., PRL **109**, 165701 (2012)

 $g^{(2)}(Q,t) = 1 + \exp(-2[t/\tau]^{\gamma})$

Aging dynamics of a Laponite glass: R. Angelini *et al.*, Soft Matter **9**, 10955 (2013)

The supercooled liquid-to-glass transition

Pablo G. Debenedetti and Frank H. Stillinger, Nature (2001)

Better than with regular XFELs?

FEL Dynamics via double pulse exposures

Image analysis (normalized variance) yields the speckle contrast b of summed images.

Δt $\beta(\Delta t)$ can be mapped out 100 Speckle contrast (%) $\beta(\Delta t) \sim (1 + |f(t)|^2)/2$ 80 60 40 sample 20 area detector 0 10 20 30 0 Delay Δt

C. Gutt et al., Optics Express 17, 55 (2009)

A. Madsen, European XFEL

European

XFEL Homeopathic speckle sum-images

0 ph/pix

1 ph/pix

2 ph/pix

European FEL Double pulse experiments at a synchrotron

Precise measure of <k> (average photon number)

A. Madsen, European XFEL

Need:

XFEL Double pulse experiments at a synchrotron

XFEL Double pulse experiments at a synchrotron

13

XFEL Double pulse experiments at a synchrotron

Data on GeO₂ glass, Q ~2.5 Å⁻¹ (ID10, ESRF)

SORRY, picture removed ③

Hallmann et al, unpublished

High stability, or at least precise measurement of I_0 for every individual pulse, is mandatory for the sum technique to work.

Advantage of XFELO stability?

XFEL Photons/pulse drawback

Differential scattering cross section $H_2O \sim 3 \times 10^{-24} \text{ cm}^2/(\text{rad})^2/\text{atom}$ (1st peak at ~ 2 Å⁻¹)

Scattering from $(10 \ \mu m)^3$ cube of H₂O: ~100 ph per 10^9 incident photons in a $10 \times 10 \ cm^2$ detector at 5 m distance

100 ph in 1M pixels \rightarrow **1** × **10**⁻⁴ ph/pixels/pulse (difficult conditions for speckle patterns)

Bragg peaks will help but maybe difficult to compete with high gain XFEL

XFEL Bandwidth advantage

XPCS is a time-domain technique, i.e. small $\Delta E/E$ not so important. However, there is an **improvement of the speckle contrast at high Q**, depending on beam size and sample thickness.

S. Lee *et al*. Opt. Express **20**, 9790 (2012)

But Fourier transform spectroscopy may become possible in the hard X-ray domain. $L_{coh} \sim \lambda/(\Delta \lambda/\lambda) \sim 150 \ \mu m \rightarrow t_{coh} = L_{coh}/c = 0.5 \ ps$

EuropeanXFELO application:XFELFourier Transform X-ray Spectroscopy (FTXS)

Based on measurements of the temporal/spatial coherence of light Analogous to FTIR spectroscopy and the Michelson interferometer

FTXS recipe:

- 1) Scan the pulse overlap and read out the images
- 2) Interferogram I(Δt) collected for every pixel
- 3) Group pixels, maybe averaging to get $I(\Delta t,q)$
- 4) FT to get $S(\omega)$ vs q, or g(r) vs Δt

Possible to use for broadband lensless imaging (CDI) as well Already done with broadband (HHG) sources (S. Witte *et al., talk at Coherence 2016*)

Possible science examples:

High Tc SC, cuprates, ferropnictides SC bandgap, nesting, nm- μ m corr.

Correlated electrons, Charge-spin correlations, SDW, CDW dynamics

Electron-phonon interactions

Correlated dynamics in disordered systems, supercooled liquids, glasses polymers...

XFEL Summary

- MHz rep rate, high stability together with 10¹⁵ ph/s (coherent) may give unique options for μs dynamics (single-shot rad damage?)
- SDL techniques will benefit from the XFELO stability but suffer from the low ph/pulse number; combined effect hard to quantify
- High spectral purity biggest asset (and distinct feature) as the longitudinal coherence is better defined, important for high-Q scattering from disorder
- Split-delay-interfere experiments possible: FTXS Previous suggestion: D. Reis, Next talk: M. Sutton
- Compact SDL design for FTXS as limited scanning range is required (double pendulum, Si monolith?)
- Sparse (homeopathic) data can (almost) always be expected. Need conversion to photons. Excessive detector requirements...
- New possibilities for high NA focusing