

X-Ray FEL Oscillator: Review **Kwang-Je Kim XFELO Science Workshop** June 29-July1, 2016 **SLAC National Accelerator Laboratory** Menlo Park, CA

Free Electron Laser Oscillator (FELO)

- A low-gain device with a low-loss x-ray cavity
- Optical pulse formed over many electron passes
 - The FELO output is stable even with electron beam fluctuation
- An FELO may be regarded as an infinite sequence of undulator, mode shaper, and fresh e-beam

- Proposed by R. Collela and A. Luccio at 1983 BNL workshop by using Bragg reflectors as high reflectivity normal incidence mirrors
 - The same WS where BNP proposed SASE
 - Taking into account of the advances in accelerator (ERL)and xray optics, it was "resurrected" in 2008 by KJK, Y. Shvyd'ko, and S. Reiche
- Tuning is possible with the four-crystal, zigzag cavity
 - R. M.J. Cotterill (1968, ANL); KJK and Y. Shvyd'ko (2009)
- Electron beam with a constant, ~ MHz rep rate will be ideal

Temporal and spectral evolution

- As the roundtrip pass number *n* increases
 - The spectral width decreases: $\Delta \omega / \omega \propto 1 / \sqrt{n}$
 - The pulse width decreases: $\Delta z \propto 1/\sqrt{n}$
- Evolution stops when $\Delta z \times \Delta \omega / \omega \rightarrow \lambda$

• \rightarrow The limiting spectral width (the super-mode theory)

 $\frac{\Delta\omega}{\omega} \rightarrow \sqrt{\frac{1}{2N_u} \frac{\lambda}{\Delta z|_0}} = (\text{ gain BW } \square \text{ "transform limited BW"})^{1/2}$

• However, the full transform limit $\Delta \omega / \omega = \lambda / \Delta z_0$ may be achieved with nonlinear saturation: $y_0 \xrightarrow{N_{pass} = 10}_{90} \xrightarrow{N_{pass} = 30}_{6} \xrightarrow{N_{pass} = 30}_{30} \xrightarrow{N_{pass} = 100}_{32} \xrightarrow{N_{pass} = 200}_{32} \xrightarrow{N_{pass} = 60}_{32}$

XFELO: $\lambda / \Delta z \sim 10^{-7}$ for $\lambda = 1$ Å and $\Delta z = 1$ ps

An X-Ray FEL Oscillator is fully coherent and stable

- Full transverse and longitudinal coherence
- Transform limited BW: $\Delta\hbar\omega =$ (3-10) meV for (0.3-1) ps pulse length
- 10⁸-10⁹ γ's /pulse, or 10¹⁴-10¹⁵ γ's /second
- Complete polarization control with crossed U
- →100-fold higher spectral flux, 10,000-fold higher brightness than USR

Electron energy can be reduced for a harmonic XFELO for high-quality electron beam (H. X. Deng and Z. M. Dai)

- Operation at fundamental:
 - □ λ=λ_U (1+ K²/2)/2γ²
 - − SASE: $E_e \ge 8$ (SLAC:14) GeV for high exponential gain
 - Oscillator: E_e ≥ 7 GeV (gain need only overcome the roundtrip loss)
- Operation at harmonics h:
 - □ $\lambda_{h} = (\lambda_{U} / h)(1 + K^{2}/2)/2\gamma^{2}$
 - Oscillator: Madey's theorem→ gain + h→E_e ~ 4 GeV, h=5,7 gives sufficient gain/pass
 - At this energy SASE produces negligible harmonic power of hard x-rays
- Harmonic XFELO can produce hard x-rays with lower
 E-beam energy→ reduced size and cost

4 GeV LCLS II SCRF linac can drive 5th harmonic XFELO

7

June 29-July 1, 2016

	Spectral BW (FWHM)
	Pulse rep rate
	# of photons/pulse
XFELO Science Retrea	t SLAC

Major Parameters

	Parameter	Value	Units
Electron bunch	Energy	4.0	GeV
	Peak current	100-140	Α
	Bunch charge	100	pC
	Bunch length	400	fs
	Energy spread	0.1	MeV
	Norm. emittance	0.3	μm
	Undulator period	2.6	cm
	Undulator K	1.433	
	# undulator periods	1250	
Optical cavity	Loss/round trip	15	%
X-ray pulse	5 th harmonic energy	14.4	keV
	X-ray pulse length (FWHM)	500	fs
	Spectral BW (FWHM)	5	meV
	Pulse rep rate	1-2	MHz
	# of photons/pulse	3	10 ⁸

X-ray pulse profile

Technical Issues

- Electron injector producing the required beam qualities
- Diamond reflectivity and thermo-mechanical properties
- Stability of x-ray cavity
- Low-loss x-ray focusing optics
 - Curved, grazing incidence mirror
 - Be CRL
- Diamond survival under intense x-ray environment

Injector Design: For I_p <100 A, the small emittance & energy spread from the gun can be maintained thru the injector. A de-chirper removes the energy slope from bunchers (W. Qin, Y. Ding, K. Bane,..)

Diamond: Excellent Thermo-Mechanical Properties

TISNCM diamonds tested for reflectivity & Crystal stabilization works at 1 Hz BW

Diamond Reflectivity Studies: C(008) @ 14.3 keV

HERIX Monochromator Stabilization

Focusing optics for X-ray cavity

 Grazing incidence KB mirrors are being perfected at JTEC, but are large & heavy.

Be-CRL can be a low-loss device for large focal length application (>20m)

Estimates for Damage Thresholds (N. Medvedev)

Single shot effects:

- ✗ 1) Nonequilibrium electron kinetics ∼100 fs
- × 2) Nonthermal melting ~150 fs (0.7 eV/atom, N_e ~1.5%)
- X 3) Thermal melting ~1-10 ps
 Multishot effects:
- x 1) Melting, stresses, fatigue (require heating)
- x 2) Electrons recombine: fluorescence <1 ns
- x 3) Point defects are not produced

XFELO Science Retreat SLAC

4) Surface effects may play a role ~1 µm

APS experiment for the resilience of diamond under x-ray exposure in an XFELO cavity up to

- 4 hours (T. Kolodziej, Yuri, Stan, Deming Shu,..)
 - 35 ID-B: 8 kW/mm² in 120x30 μm² spot (~XFELO)
 - No evidence of damage under medium resolution topography
 - Possible shifts of rocking curve by < 1 meV</p>

HR measurements@ 24 keV

- Scan across irradiated spots show drops in reflectivity
- The drop could be due to the observed shifts of ≤ 0.5 meV in the rocking curves
- If so, the effect can be compensated by FB
- Is the shift due to the adsorption of impurities?
- Irradiation under high vacuum (< 10⁻⁸) and further HR reflectivity measurements are planned.

11111

X-Ray MOPA for higher intensity, subfs pulse, & higher photon energy

- Two guns produces XFELO and high-gain e-bunches
- Both bunches enter interleaved to the first accelerator and separated after acceleration
- XFELO output pulses are delayed to overlap with the high-gain e-bunches
- A harmonic generation stage may precede the high-gain amplifier
- The high-gain bunches are further accelerated for resonance in the amplifier

Concluding remarks

- An XFELO will enhance the capability of X-ray FEL as a scientific instrument
 - Provide high rep rate hard x-rays of unique properties for LCLS II
 - Complements SASE (ultrafast)
- We have demonstrated:
 - The diamond mirror has high reflectivity, and seems to survive the high-intensity environment.
 - Be-CRL will be a compact and low loss focusing element
 - The specs for placing XFELO elements at 1 Hz BW
- The drive accelerator could be
 - ERL
 - USR with a bypass and kickers, and pulsed operation
 - European XFEL (pulsed or CW) and LCLS II (CW)
- A "perfect" facility with HGXFEL& XFELO), together (XFELO seeding HGFEL), or separately

C

XFELO Collaboration ANL/APS,**SLAC**, C-FEL, Peking U, **TISNCM**

- General: Zhirong Huang, Jerry Hastings, Jo Frisch, Tim Maxwell, Yuri Shvyd'ko, KJK
- FEL physics/simulation: Ryan Lindberg, Bill Fawley, Yuantao Ding, Gabe Marcus, Tim Maxwell
- Theory/simulation of diamond damage: Nikita Medvedev
- Diamond damage experiment: Yuri, Tomasz Kolodziej, Stan, Vladimir Blank, Sergei Terentyev
- CRL lens: Jacek Krzywinski, Stan Stoupin, Lahsen Assoufid, Xianbo Shi
- Optical cavity mechanical design: Deming Shu, Steve Kearney
- Electron beam: Weilun Qin, Yuantao, Karl Bane, Paul Emma, Tor Raubenheimer, Dieter Walz
- Sciences: Jerry, Yuri, John Arthur,...

