Perspectives on XFELO driving atomic nuclei
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Few perspectives ...

... why atomic nuclei should meet the XFELO
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Previous experiences ...

e scaling in frequency from optical lasers + atoms

coherent control , non-linear optics,

dark states, slow light, entanglement,
electromagnetically induced transparency,
revolution in atomic physics, etc.

" relies on driving and control over most of the atomic state population!

CAN WE ACHIEVE SOMETHING SIMILAR WITH NUCLEI AND X-RAYS?



Special nuclear incentives ...

GAMMA-RAY LASERS

FREQUENCY STANDARDS

NUCLEAR ISOMERS

@ ]ong-lived nuclear states
@ nuclear batteries

@ astrophysical interest
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Previous experiences ...

e scaling in brilliance from synchrotrons + nuclei
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Nuclear Forward Scattering (NFS) of Synchrotron Radiation

nuclear condensed matter physics based on the Mossbauer effect,
control of nuclear decay for ensembles of nuclei’, storing single x-ray photons

" relies on weak excitation, a single nucleus only!

WHAT HAPPENS WHEN THE XFELO COMES INTO PLAY?
..to be discussed more in the Mdssbauer session.



Nuclei @ XFELO ... Outline

@ Stronger photoexcitation

... due to improved temporal coherence

@ Applications: nuclear STIRAP, nuclear pump-probe experiments

... relying on coherence and efficient excitation

@ Nuclear reactions starting from excited states

... new for nuclear physics; possibly in plasmas
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Nuclear transition energies
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@ typically very narrow widths

@ not so many candidates




Nuclear transition widths

Nuclear widths are very narrow!
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Accelerated nuclei as targets

bridge the gap between nuclear excitation and photon energies...
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Nuclear Rabi flopping
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T. Biirvenich, J. Evers and C. H. Keitel, Phys. Rev. Lett. 96, 142501 (2006)



Coherence in nuclear Rabi floping
coherence <= intensity
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T. Biirvenich, J. Evers and C. H. Keitel, Phys. Rev. Lett. 96, 142501 (2006)



Coherence in nuclear Rabi floping
coherence <= intensity
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XFELO photoexcitation

Several orders of magnitude more efficient than LCLS for instance due to
@ temporal coherence

@ high repetition rate

See talk by Jorg Evers tomorrow
— predictions of strong excitation up to population inversion in thin-film cavities!

====> EXPLOIT THIS POSSIBILITY AND TRANSFER ATOMIC
PHYSICS SCHEMES TO NUCLEAR SYSTEMS!



Nuclei @ XFELO ... Outline

@ Stronger photoexcitation

... due to improved temporal coherence

> Applications: nuclear STIRAP, nuclear pump-probe experiments

... relying on coherence and efficient excitation

@ Nuclear reactions starting from excited states

... new for nuclear physics; possibly in plasmas



STIRAP

STImulated Raman Adiabatic Passage
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STIRAP

STImulated Raman Adiabatic Passage
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STIRAP
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Pump probe experiments

Mirror

Circulating
electron beamn

Mirror

use XFELO photoexcitation as pump
“strong pulse”
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More elaborated thoughts of Wen-Te Liao
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More elaborated thoughts of Wen-Te Liao

Nuclear Rabi Oscillation
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More elaborated thoughts of Wen-Te Liao

Nuclear Four-Wave Mixing using XFELO

_\f_.h:}':-l._ ) *ﬁq
&nay X ray

nd
crow 92
E].V

>’Fe

4

N
oy, *

- -

|2
} —_ 1)

&

3) i
Case 1 without XFELO Case 2 with counter-propagating XFELO




More elaborated thoughts of Wen-Te Liao
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More elaborated thoughts of Wen-Te Liao

Nuclear Four—Wave Mixing usmg XFELO

0.8

CIDiE

| Fields at z=0 o008 |

o N [
— a — D.00B }
XY g - — — - Fields atz=L :
G G uum;
02f onazé

0.0 CII:ICII:I-:-

éél}l = I4'*_;IEI == IEE‘.{!II : IEI:I]E s I51I{I N

0.00006

t(ps) |
- Sgng;
%ﬁa#ﬂw 1 ,,i
Photon # of couple =2.5 '

= 000004
Ic: 0.00003 |
Photon # of PI"OIJ'E 2.5 Z=0 Z=L = 000002 [
gqj_ = ﬁf 6.3x10° 57Fe 0.00001 |

y' =1.84x10%y

y=7.1 MHz

200 300 400 500 500 oo

t(ps)

T = e I e e e

y -
o 0.00005 F

L . L L L L L i
100 200 300 400 500 &00 Tod

t(ps)



Two-photon excitation of Fe (see slides by A. Kaldun)
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Nuclei @ XFELO ... Outline

@ Stronger photoexcitation

... due to improved temporal coherence

@ Applications: nuclear STIRAP, nuclear pump-probe experiments

... relying on coherence and efficient excitation

» Nuclear reactions starting from excited states

... new for nuclear physics; possibly in plasmas




XFELO vs. XFEL concerning plasma
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XFELO and nuclear reactions

We can use the efficient XFELO photoexcitation to probe for the first time
nuclear reactions from excited nuclear states!

Scenario I .
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Ex

X-Tays nuclear reaction
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alpha, n, p, other nuclei

Circulating
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Gr

—» why plasma? Because due to reduced electron screening the reaction
may be more efficient

— all these reactions would require additional beams — protons, neutrons, etc.

We will need table-top laser-driven sources for such experiments!



XFELO and nuclear reactions

We can use the efficient XFELO photoexcitation to probe for the first time
nuclear reactions from excited nuclear states!

Scenario II .
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nuclear reaction
(collision) with +
alpha, n, p, other nuclei
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—» XX state can be a nuclear isomer or a compound nucleus state —
for instance isomer triggering possible.

Ex

XX



XFELO and nuclear reactions

Scenario 11

nuclear reaction o
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Excitation step after neutron capture
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* photoexcitation, relevant for r-process — Lee A. Bernstein @ UCB, LLNL



Summary & Requirements

Driving nuclear transitions...

can be done much more efficiently with XFELO

Possible applications borrowed from atomic systems...

nuclear coherent population transfer, pump-probe experiments, 4-wave mixing

Closer to nuclear physics...

exploit efficiency of XFELO to probe for the first time nuclear reactions starting
from excited nuclear states

Needed:

most importantly, tunability for addressing nuclear resonances!

Intensity, repetition rate, BW depending on the envisaged application

Average vs. peak brilliance an issue depending on whether excitation after one
pulse or excitation after 1 s is of interest.




Summary & Requirements

Driving nuclear transitions...

can be done much more efficiently with XFELO

Possible applications borrowed from atomic systems...

nuclear coherent population transfer, pump-probe experiments, 4-wave mixing

Closer to nuclear physics...

exploit efficiency of XFELO to probe for the first time nuclear reactions starting
from excited nuclear states

Needed:

most importantly, tunability for addressing nuclear resonances!

Intensity, repetition rate, BW depending on the envisaged application

Average vs. peak brilliance an issue depending on whether excitation after one
pulse or excitation after 1 s is of interest.

Thank you for your attention!






(Rough) plasma estimates

XFEL-induced plasma:
inner-shell holes, uniform radiation,
rapid heating, cold ions
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H. K. Chung et al. HEDP 1, 3 (2005)

LETTER

Creation and diagnosis of a solid-density plasma
with an X-ray free-electron laser
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A.Scherz’, W. Schlotter’, S. Toleikis’, J. I. Turner”, L.Vysin®, T. Wa.ng", B. W, U. Zastrau'®, D. Zhu’, R. W. Lee’, P. A. Heimann?,
B. Nagler” & J. S. Wark!

doi:10.1038/nature10746

electrons equilibrate quickly
uniform electron temp. T, and density n.
Te estimate from deposited laser energy

FLYCHK: calculation of charge state
distribution and n. (rate equation model)

jons stay at room temperature and
solid—state density

hydrodynamic expansion is neglected

plasma lifetime ~ 100 ps
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