

Iron inside cells and in complex chemical systems

Volker Schünemann Department of Physics Biophysics and Medical Physics

XFELO Science Workshop June 29 - July 1, 2016 SLAC National Accelerator Laboratory Menlo Park, CA

High brilliance and small bandwidth makes XFELO-Mössbauer spectroscopy applicable to all iron containing proteins without tedious ⁵⁷Fe enrichment. This will boost the interest of biological communities and generate a wealth of applications, e.g.:

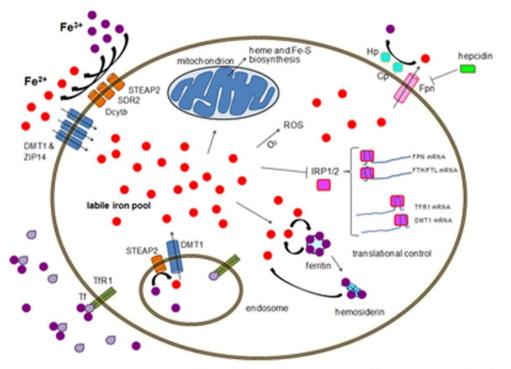
- Exploring iron trafficking in cells
- Time dependent NRS (NFS;NIS): frozen samples (high-throughput)
- Extension of SRPAC to non-frozen biological samples
- Iron cofactor –protein assembly in cells
- Nucleation and Growth of iron containing nanophases in iron storage proteins (ferritin)
- Pathologic iron in human cell tissue (substantia nigra, cancer cells)

Mössbauer spectroscopy: XFELO vs. conventional Mössbauer spectroscopy (MB)

- XFELO: 10⁹ 14.4 keV MB photons per sec
- Conventional MB: 10⁴ MB photons per sec
- Conventional MB: 1mM ⁵⁷Fe protein sample requires 7d measuring time →6*10⁹ MB photons required

 \rightarrow 1 MB spectrum of ⁵⁷Fe protein sample in 6 sec with XFELO

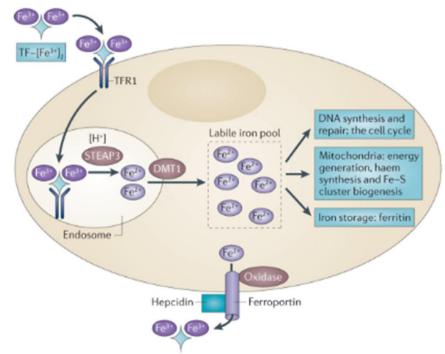
• Natural abundance of ⁵⁷Fe: app. 2%


→ 1 MB spectrum of <u>non-enriched iron protein</u> sample in 5 min with XFELO

This will broaden the application of XFELO-Mössbauer spectroscopy to almost all iron proteins

Iron inside cells: Ironomics

Lindahl and coworkers: Biophysical Investigation of the Ironome of Human Jurkat Cells and Mitochondria Biochemistry, 2012, 51 (26), 5276.


https://en.wikipedia.org/wiki/Human_iron_metabolism

Iron inside cells: Ironomics

- Exploring iron trafficking in cells
- Time dependent NRS (NFS;NIS): frozen samples (high-throughput)
- SRPAC on non-frozen samples
- Iron cofactor –protein assembly in cells
- Nucleation and Growth of iron containing nanophases in iron storage proteins (ferritin)
- Pathologic iron in human cell tissue (substantia nigra, cancer cells)

Lindahl and coworkers: Biophysical Investigation of the Ironome of Human Jurkat Cells and Mitochondria Biochemistry, 2012, 51 (26), 5276.

S. V. Torti & F.M. Torti Nature Reviews Cancer 13, 342-355 (May 2013)

Iron Transport and Storage in Single cells and Tissue

 Marine algae like giant kelp are used to produce biomass

PHYSIK

- Marine algae growth is limited by iron supply
- Iron-trafficking mechanism in algae is not known, but if it is specific iron fertilizers for marine algae are in reach

Carl J. Carrano Department of Chemistry and Biochemistry San Diego State University

www.rsc.org/metallomics

PAPER Carl J. Carrano et al. Surface binding, localization and storage of Iron in the giant kelp. Macrocystis pyrifera

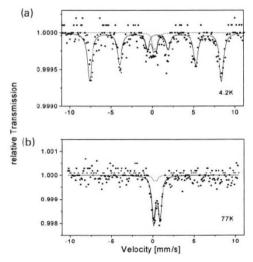
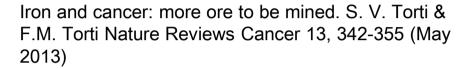
TECHNISCHE UNIVERSITÄT

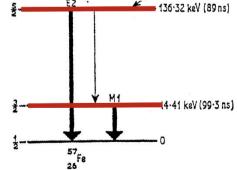
Iron transport and storage in single cells and tissue

KAISERSLAUTERN

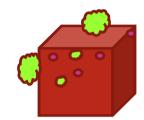
- What is the iron phase in the degenerated "substantia nigra" of patients with Parkinsons desease?
- Problem: Iron levels are high in substantia nigra, but iron is stored in ferritin within an iron-phosphate core and in Fe-Neuromelanin agglomerates
- NRS could help to explore the general role of iron in neurodegenerative deseases

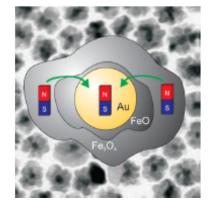
Zecca et al. J. Neurochemistry (2001) 76, 1766

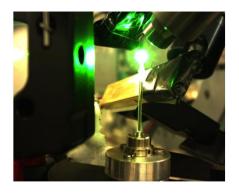




Fig. 4 Mössbauer spectra obtained at 4.2K (a) and 77K (b). Dashed lines represent contamination due to the minor, yet detectable, ⁵⁷Fe content of the windows in the cryostat. Solid lines were simulated on the basis of Lorentzians with the Mössbauer parameters as summarized in Table 1.

Fighting Cancer with with XFELO?


"... iron can contribute to both tumour initiation and tumour growth;..... Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival....Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy. A novel cancer therapy using a Mössbauer-isotope compound. Mills et al.Nature. 1988 336(6201):787-9.


Iron in complex chemical systems


 Iron in catalysts (De-NOx, Fuel cells, Fischer-Tropsch, Haber-Bosch) under working conditions

 Ps –resolved Optical pump-NRS Probe on iron containing compounds (e.g. molecular switches)

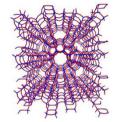
• Exploring nucleation and growth of single iron containing nanoparticles

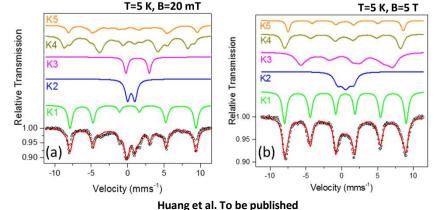
Pineider et al. , ACS NANO 7(1) 857 (2013)

TECHNISCHE UNIVERSITÄT

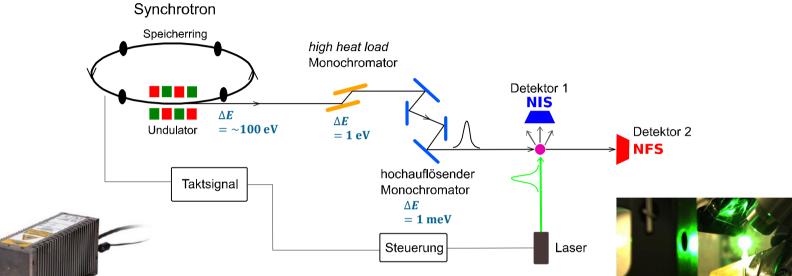
Iron containing heterogeneous catalysts at work

- Identification of active iron-sites in heterogeneous catalysts is a demanding task. The supported catalyst contains iron in many phases (e.g. iron oxide nanoparticles, as single ions, agglomerates of only a few iron centers)
- Real-time NRS during catalyst activation and on-stream during reaction
- Example: Fe-ZSM-5 catalysts perform reduction of NO_x to N₂.

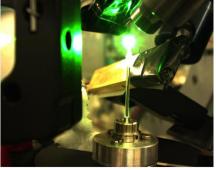

R.P. Vélez, I. Ellmers, H. Huang, U. Bentrup, V. S., W. Grünert, A. Brückner, J. Catal. 316, 103 (2014)



10


http://www.3dchem.com/i magesofmolecules/H-ZSM-5.jpg

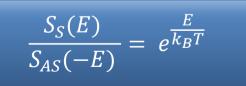
Optical-Pump-NRS-Probe Experiments



DESY Hamburg, PETRA III "40 bunch mode"

- ightarrow Prompt puls with 44 ps length and 192 ns distance
- \rightarrow Repetitionrate ca. 5,2 MHz
- \rightarrow Bunch clock used as laser trigger

Optical Pump NIS Probe: First Experiments on spin crossover compound [Fe(PM-BiA)₂(NCS)₂]

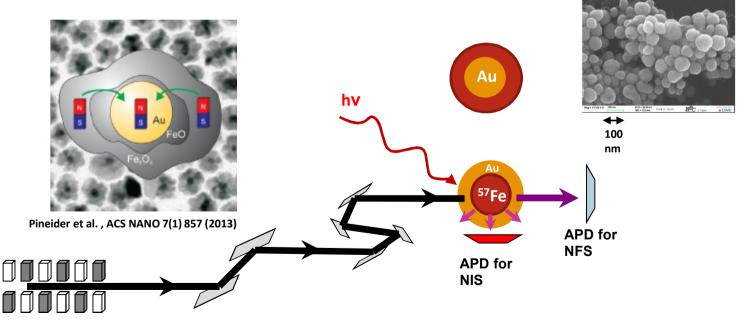

ミニノ 400 300 əsınd 200 100 Ω -20 50 80 -10 10 20 30 60 70 40 Energie [meV] 80K ohne Laser 80K 16mW 0ns 80K 156mW 300K ohne Laser

NIS

Hypothesis Low energy phonons are present after photoexcitation

Temperatur determination Stokes/Antistokes ratio

	T [K]	ΔT [K]
80 K no Laser	124,6	6,4
80 K 16 mW 0 ns	134,7	8,7
80 K 156 mW	317,3	34,5
300 K no Laser	320,9	14,5



Nanoparticles: Controlling Nano Magnetism with Light: Magneto-Plasmonics

• Optical pump - NRS probe experiments for exploration of magnetoplasmon interaction

H. Huang TU Kaiserslautern