XFELO Retreat, SLAC, 28 June – 1 July 2016

Nuclear Resonant Scattering with an XFELO

Ralf Röhlsberger

Deutsches Elektronen Synchrotron DESY, Hamburg

XFEL-O Performance

- Photon spectral range: $2 \lesssim E \lesssim 25$ keV.
- Full transverse and temporal coherence of ≈ 1 ps (rms) $\Longrightarrow \Delta E \simeq 2$ meV.
- 5×10^8 photons/pulse (1 μ J/pulse)
- Peak spectral brightnes comparable to SASE XFEL.
- Repetition rate $\gtrsim 1.5$ MHz $\implies (7.5 \times 10^{14} \text{ ph/s} = 1.7 \text{ W})$ average spectral brightness factor $\simeq 10^5$ larger than SASE XFEL, and comparable to the seeded SASE XFEL.
- Being operated at 14.4 keV, XFEL-O would generate $\approx 10^3$ Mössbauer photons per pulse with a 5 neV spectral width, the natural with of the 14.4 keV nuclear resonance in 57 Fe. With a repetition rate of $\gtrsim 10^6$ Hz, the XFEL-O would produce about 10^9 fully coherent 14.4 keV Mossbauer photons per second.

• Tunable.

Outline

- Micro-eV resolved spectroscopy for dynamics in mesoscopic/artificially structured materials
- Pump-probe NRS for non-equilibrium dynamics
- NRS ptychography in the time-energy domain for highresolution spectroscopy of hyperfine interactions

(1) Dynamics on mesoscopic length scales (1 nm – 100 nm)

Dynamics of artificially structured materials

Dynamical properties are modified due periodic variation of elastic properties

This allows to tailor the vibrational properties of new materials by adjusting their structure

 → Nanocomposites
(e.g. metal/polymer, amorphous/crystalline)

> T. Gorishnyy et al., Phys. Rev. Lett. 94, 115501 (2005)

Phononic crystal

Friction in (micro)mechanical devices

Tailoring dynamical properties of materials
→ understanding the microscopic origin of energy dissipation

Investigation of kinetic friction with synchrotron radiation

Microscopic view of sliding friction

 $\sim 100 \mu m$

optics

towards detector

Nuclear inelastic spectroscopy with μeV -resolution

A μeV spectrometer for IXS

A µeV spectrometer, alternative version

The nuclear lighthouse effect

NRS from a polycrystalline ⁵⁷Fe foil

Magic angle spinning (MAS) technique of NMR spectroscopy

Rotational freq.	Diameter	V _{max} (m/s)	Material
7 kHz	7 mm	132	Si ₃ N ₄
15 kHz	4 mm	141	Si_3N_4 , ZrO_2
35 kHz	2.5 mm	165	ZrÕ ₂
70 kHz	1.3 mm	110	ZrO_{2}

How do materials react on impulsive excitations?

 \rightarrow Short-pulse electric, magnetic and optical stimuli form the basis for high-speed data processing

 \rightarrow Relaxation mechanisms important to understand, simultaneously on spatial and temporal scales

→ Probe the relaxation mechanism via nuclear resonant scattering (elastic and inelastic)

Probing non-equilibrium phonons via impurity atoms

VOLUME 65, NUMBER 5

Dynamics of Monochromatically Generated Nonequilibrium Phonons in LaF₃:Pr³⁺

W. A. Tolbert, ^(a) W. M. Dennis, and W. M. Yen^(a)

Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (Received 9 April 1990)

The temporal evolution of nonequilibrium phonon populations in LaF_3 : Pr^{3+} is investigated at low temperatures (1.8 K) utilizing pulsed, tunable, monochromatic generation and time-resolved, tunable, narrow-band detection. High-occupation-number, narrow-band phonon populations are generated via far-infrared pumping of defect-induced one-phonon absorption. Time-resolved, frequency-selective detection is provided by optical sideband absorption. Nonequilibrium phonon decay times are measured and attributed to anharmonic decay.

Pr³⁺ fluorescence

FIG. 1. (a) Schematic of phonon dispersion curve. FIR phonon generation via defect-induced one-phonon absorption is symbolized by the vertical arrow. (b) Energy level diagram for Pr^{3+} in LaF₃. Phonons of energy Δ are detected via anti-Stokes absorption at the optical probe frequency v_D , where $\Delta + v_D$ is the energy of the zero-phonon line. Phonon-induced absorption is monitored by observing the v_{FI} fluorescence.

Probing nonequilibrium phonons via nuclear excitation

- \rightarrow Probing non-equilibrium phonon populations
- → Spatial resolution: Nanofocusing or ultrathin probe layers
 - G. K. Shenoy and RR, Hyperfine Interact. 182, 157 (2008)

Application: Ptychographic Spectroscopy

Task: High-resolution spectroscopy of nuclear hyperfine interactionsApproach: Determine energy spectrum from diffraction pattern in the time domainProblem: Phase is lost in the detection process

Solution: Taking temporal beat patterns with overlapping illumination functions (as in Scanning Diffraction Microscopy a.k.a. Ptychography)

Ptychography: Iterative Phase Retrieval Algorithm

Iterative image retrieval via back projection of diffraction patterns into the image plane Fast converging and stable procedure due to high redendancy

Ralf Röhlsberger | NRS with an XFELO | SLAC, 28 June – 1 July 2016 | Page 22

Ultranarrow Bandpass Filters for X-rays

Summary

Nuclear resonant scattering with an XFELO

Scientific fields

- Dynamics of mesoscopic materials
- Non-equilibrium dynamics
- High resolution hyperfine spectroscopy

Methods

- Phonon microscopy with μ eV-resolution
- Nuclear resonant pump-probe experiments
- Time energy domain ptychography

