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Abstract

A formalism for the evaluation of transverse emittance dilution due to single component er-
rors in a single-pass electron linac or transport line is presented, and with the introduction of
the ‘equivalent’ emittance, which takes into account not only the increase of the phase space
area, but also the associated phase space distortion or matching error. Many specific dilu-
tion mechanisms are identified here, such as dispersion errors, misaligned magnets, magnet
field quality errors, synchrotron radiation, and wakefields, with simple analytical formulas
developed for each case. In many cases actual emittance measurements at the LCLS [1] or
tracking simulations are compared.

⇤Work supported by the U.S. Department of Energy under contract DE-AC02-76SF005.



1 Introduction

A revolution in light source technology has recently emerged with the success of the X-
ray Free-Electron Laser (FEL) [1], [2], [3]. The X-ray FEL provides nearly ten orders of
magnitude increase in photon brightness with respect to third-generation light sources based
on storage ring technology. With this exceptionally bright and penetrating radiation, and
with femtosecond pulse lengths and Angstrom-scale wavelengths available, many fields of
scientific study are making spectacular new advances [?]; in molecular imaging, dynamics
in biological macromolecules, materials science, atomic physics, ultrafast electron dynamics,
and many more disciplines which benefit from high-brightness, ultrashort hard and soft
coherent x-ray pulses.

The FEL output power is highly sensitive to the electron beam quality and final energy,
with much e↵ort taken to generate and preserve these high brightness electron beams as
they are accelerated and transported to the FEL undulator, which produces this coherent
radiation. Electron beam emittance preservation in the linear accelerator (linac), as a driver
for an FEL [4], is critical to the machine’s performance. Various forms of emittance growth
occur in the linac, the bunch compressors, and the electron transport lines. These mecha-
nisms define many of the system and component tolerances and need to be fully examined
prior to machine construction and operation.

We quantify many common emittance growth mechanisms and in some cases suggest pos-
sible corrections. To allow simple analytical expressions for emittance growth due to various
errors in a single-pass machine, we concentrate here on the immediate, single component
emittance e↵ects and leave the task of evaluating many simultaneous component errors to
detailed computer simulations. Central to our discussion is the concept of the ‘equivalent
emittance’ [6], introduced to us by Bill Spence at SLAC in 1991, which quantifies not only
the phase space area increase (emittance growth) generated by the error, but also the phase
space ellipse distortion (matching error). We quantify these e↵ects by examining the second
moments of the phase space distributions immediately following a single component error,
such as a misalignment. Note that the results of this analysis are most suitable to evaluat-
ing single component tolerances where emittance growth levels need to be held to less than
a few percent. For convenience, a table of mathematical symbols is provided in Table 1,
and many single component tolerances, based on our formulations here, are plotted for the
LCLS machine design as an examaple. Finally, a summary of the emittance growth formulas
derived here is listed in Table 2 for convenient reference.

2 Emittance Growth Formalism

2.1 The Sigma Matrix

We describe the transverse phase space of an electron beam in terms of its 2nd moments
using the covariance (sigma) matrix [5], starting with the unperturbed (‘design’) phase space
with the standard beam Twiss parameters ↵0, �0, �0, where the subscript zero indicates the
‘design’ values at the location of interest (see Fig. 1). The 2⇥2 sigma matrix for the design
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Figure 1: Simulated transverse phase space with the ‘design’ distribution (blue) and its rep-
resentative rms ellipse (yellow), and the ‘perturbed’ distribution (red) and its representative
ellipse (green). The ellipses represent the 2nd moments of the distributions (the covariance
matrix), even for highly distorted phase space distributions as shown in red.

beam is shown in Eq. (1).

�0 ⌘
✓

hx2
0i hx0x

0
0i

hx0x
0
0i hx0

0
2i

◆
⌘ "0

✓
�0 �↵0

�↵0 �0

◆
. (1)

Here �0 ⌘ (1 + ↵2
0)/�0, the electrons are relativistic (E � mc2), and the brackets, hi,

represent an ensemble average over the electron coordinates within the bunch at one location,
and chosen around their mean value such that hx0i = 0 and hx0

0i = 0. From these second
moments, the rms transverse emittance is

"0 =
p
det(�0) =

q
hx2

0ihx0
0
2i � hx0x

0
0i2. (2)

The rms transverse emittance, an invariant quantity under linear transport, has geometric
interpretation as the area/⇡ of the phase space ellipse.

If a perturbation or error is present in the beamline, the resulting beam covariance matrix

� ⌘
✓

hx2i hxx0i
hxx0i hx02i

◆
⌘ "

✓
� �↵
�↵ �

◆
, (3)

will, in general, be di↵erent from �0 in Eq. (1). The perturbation may change the emittance,
"0 ! ", the beam Twiss parameters, ↵0 ! ↵, �0 ! �, �0 ! �, or both.

To describe the emittance growth we will write the particle coordinates at the exit of
the beamline of interest as x = x0 +�x and x0 = x0

0 +�x0, where (�x,�x0) represents the
coordinate perturbation due e.g. to optical aberrations, scattering, radiation emission, etc.
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The covariance matrix for the perturbed beam can then be written as

� =

✓
h(x0 +�x)2i h(x0 +�x)(x0

0 +�x0)i
h(x0 +�x)(x0

0 +�x0)i h(x0
0 +�x0)2i

◆
. (4)

2.2 Emittance Growth and Matching Error

For simplicity, and since they describe many important emittance growth mechanisms, we
start by considering perturbations that are uncorrelated with the unperturbed phase-space
coordinates:

hx0�xi = hx0�x0i = hx0
0�xi = hx0

0�x0i = 0. (5)

This case encompasses common mechanisms which couple the orthogonal bunch coordinates
(y, y0, z, or � ⌘ �E/E) into these transverse coordinates (x and x0), such as x-y coupling,
transverse wakefields, momentum dispersion, and synchrotron radiation. With the assump-
tion of uncorrelated perturbations, as defined in Eq. (5), the resulting emittance (squared)
becomes

"2 = det(�) = "20 + "0
�
�0h�x02i+ 2↵0h�x�x0i+ �0h�x2i

�
+ "2a, (6)

where the additive emittance component is

"2a = h�x2ih�x02i � h�x�x0i2. (7)

This additive emittance component, "a, is best understood from Eq. (6) with the unper-
turbed emittance, "0, set to zero. In this case the perturbed emittance is simply the additive
emittance, with "a � 0. Note that the assumption of no correlations in Eq. (5) is important
here, since setting the unperturbed emittance, "0, to zero would otherwise a↵ect and possibly
eliminate the additive emittance, "a. For example, the geometric aberrations of a sextupole
magnet may vanish if the initial emittance is zero (i.e., no transverse beam spread). The
case of finite correlations will be treated in the next sections.

In analogy with Eq. (3) we write the second moments of the perturbation as h�x2i = "a�a,
h�x�x0i = �"a↵a, and h�x02i = "a�a, and cast the expression for the emittance of Eq. (6)
in the form

"2 = "20 + 2⇣a"0"a + "2a, (8)

where ⇣a in the cross-term is the beta-mismatch amplitude of the perturbation with respect
to the design Twiss functions, defined as

⇣a ⌘
1

2
(�0�a � 2↵0↵a + �0�a) � 1. (9)

This amplitude mismatch parameter is discussed in the next sections.
Note that the Twiss beam parameters, ↵0, �0, and �0, describe the nominal (‘design’)

phase space, whereas the parameters, ↵a, �a, and �a, describe the additive phase space, as
shown in red in Fig. 2. If the additive phase space ellipse (red) matches (i.e., has the same
shape and orientation but not necessarily the same area) the unperturbed ellipse (blue), as
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Figure 2: Graphical representation of the phase space showing how an additive emittance
("a, red), added to the unperturbed beam ellipse ("0, blue), a↵ects the final beam ellipse
(", green), depending on their relative matching condition, ⇣a. The final emittance at left is
larger due to its mismatched condition, ⇣a > 1, whereas the right side shows the minimum
perturbed emittance arranged with ⇣a = 1 by choosing the matched initial beam ellipse
(blue).

shown in the right plot of Fig. 2, then ⇣a = 1 and the final emittance of Eq. (8) becomes a
minimum as a simple sum of the initial and additive emittances:

" = "0 + "a. (10)

However, if the additive phase space ellipse (red) does not match the initial ellipse (blue),
as shown in the left plot of Fig. 2, then ⇣a > 1 and Eq. (8) describes the emittance of the
perturbed beam, including the cross term, and the perturbed emittance is greater than the
sum of the two components: " > "0 + "a.

So for example, if the synchrotron radiation of a bend magnet generates the red ellipse
shown in Fig. 2, one can always readjust the focusing upstream of the bend to transform
the blue ellipse to match the red, and the total emittance would then be the minimum (the
sum).

Many emittance dilution mechanisms have "a = 0. These include (but are not limited
to) perturbations that are ‘point-like’, where the particle kicks may be random in amplitude,
but they all occur at the same betatron phase (as shown in the two top plots of Fig. 3), as
happens with one thin kick source, such as Coulomb angular scattering in a thin foil.

In this case the position errors, �x, observed downstream of the kick source are com-
pletely correlated with the angle errors, �x0, meaning that: h�x�x0i2 = h�x2ih�x02i, and
the additive emittance, "a, in Eq. (7) is then clearly zero (as shown at top-right of Fig. 3),
even though we may have non-zero final emittance growth.

For these ‘point-like’ emittance dilution mechanisms, Eq. (6), with "a = 0, becomes

"2 = "20 + "0
�
�0h�x02i+ 2↵0h�x2i1/2h�x02i1/2 + �0h�x2i

�

= "20 +
"0
�0

⇣
h�x2i+

⇥
↵0h�x2i1/2 + �0h�x02i1/2

⇤2⌘
. (11)
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Figure 3: Simplified simulation of 100 electron trajectories, �x, along the beamline (top-left,
red) shown in the case where �x and �x0 are fully correlated (see top-right phase space plot)
due to a single upstream thin-kick source, such as a foil. In this ‘point-like’ case the additive
emittance is "a = 0 and an ellipse is not defined. The bottom two plots show the case where
�x and �x0 are not highly correlated, due to a finite-length perturbation source upstream
(e.g., photon emission along a dipole magnet). In this case the additive emittance is "a > 0
and the representative rms ellipse is shown (dashed). The two phase space plots at right are
sampled at s = 1 (the vertical dashed line in the left-side plots) along the beamline in this
figure.
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In the simplest cases, with only angular kicks (�x = 0), Eq. (11) becomes

"

"0
=

r
1 +

�0

"0
h�x02i, (12)

and the e↵ect can be minimized by choosing �0 as small as possible. We can also examine the
case with position scattering, but no angular scattering (although unusual), where �x0 = 0
(e.g., by evaluating the phase space at s = 2 at top-left of Fig. 3, where the kicks have
evolved into position-only errors), and then Eq. (11) becomes

"

"0
=

r
1 +

�0
"0
h�x2i, (13)

where again the e↵ect can be minimized by reducing �0 = (1 + ↵2
0)/�0 (e.g., setting ↵0 = 0

and maximizing �0).
However, if we choose the optimal design Twiss parameters in order to minimize the

emittance growth, as suggested above in Eqs. (12) and (13), we will move arbitrarily close
to the matched condition (⇣a ! 1), and in this limit, and with "a = 0, the final emittance is
not increased at all (see Eq. (10)). However, the chosen design Twiss parameters may have
been pushed toward infinite or impractical levels. This condition can be visualized by taking
the top-right plot of Fig. 3 (where "a = 0) and fitting an ellipse to the highly correlated data
points. The ellipse will have arbitrarily small area, with extreme eccentricity and a rotation
angle to match the points. Such an ellipse will have an infinite major axis and an arbitrarily
small minor axis.

Finally, it is also worth showing the scaling for very large or very small emittance growth.
For a large emittance growth, "/"0 � 1, and with only angular kicks, Eq. (12) approximates
to

1 ⌧ "

"0
⇡

r
�0

"0
h�x02i1/2, (14)

and the relative emittance growth scales linearly with the rms of the angular kicks, h�x02i1/2.
For a small emittance growth, "/"0 � 1 ⌘ �"/"0 ⌧ 1, Eq. (12) becomes

1 � �"

"0
⇡ 1

2

�0

"0
h�x02i, (15)

and now the relative emittance growth scales quadratically with the rms of the angular kicks.
This form, with �"/"0 ⌧ 1, is useful for evaluating tolerances with, e.g., �"/"0 < 1% (see
“Examples” section below). This large and small limit scaling can also be done for Eq. (13),
position errors only, but it is not shown here.

2.3 Beta Mismatch Parameter

The beta mismatch amplitude parameter [6, 7, 8], defined as

⇣ ⌘ 1

2
(�0� � 2↵0↵ + �0�) � 1, (16)
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Figure 4: Normalized transverse phase space with two ellipses representing the 2nd moments
of two di↵erent electron distributions. The mismatch amplitude is ⇣ = 1 for the matched
beam (blue circle), and the mismatched ellipse (green) has ⇣ > 1, while each ellipse has an
area of ⇡. The major and minor axes, r and 1/r are also shown for the mismatched ellipse
(green) as another way to describe ⇣ (listed at bottom of figure), and r = 1 for the matched
ellipse (blue) in these normalized coordinates.

where we drop the a subscript here for more generality, was introduced in Eq. (9) and is a
convenient way to measure the amplitude of the beta-mismatch, comparing the perturbed
beam (�, ↵) to the unperturbed (design) lattice functions (�0, ↵0). Substituting �0 =
(1 + ↵2

0)/�0 and � = (1 + ↵2)/� into Eq. (16) shows that when � = �0 and ↵ = ↵0, then
⇣ = 1 (the matched condition), and otherwise ⇣ > 1.

Figure 4 shows the mismatch parameter graphically in normalized phase space for both a
matched beam (blue, ⇣ = 1) and a mismatched beam (green, ⇣ > 1). Note that a mismatch,
⇣ > 1, distorts the ellipse but does not change the area if the emittance is preserved. We
might also define a mismatch phase [7], based on the ellipse rotation angle, but this is not
an important parameter here where we are interested only in evaluation of the emittance
growth.

The beta-mismatch amplitude parameter, ⇣, is also an invariant under linear transport,
as can be easily shown. First notice that the mismatch parameter in Eq. (16) can be written
as one half the trace of the product of the perturbed and inverse unperturbed covariance
matrices

⇣ =
1

2

"0
"
Tr(���1

0 ) =
1

2
Tr

✓
� �↵
�↵ �

◆✓
�0 ↵0

↵0 �0

◆�
. (17)

If now the beam is propagated by a linear transfer matrix R to some final point downstream
of the error source, the covariant matrices evolve as �0f = R�0R

T and �f = R�RT .
The mismatch parameter at the final location is then

⇣f =
1

2

"0f
"f

Tr(�f�
�1
0f ) =

1

2

"0
"
Tr(R�RT [R�0R

T ]�1)

=
1

2

"0
"
Tr(R���1

0 R
�1) =

1

2

"0
"
Tr(���1

0 ) = ⇣, (18)
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where in the second equality we have made use of the invariance of the rms emittance
under a linear transformation ("f = " and "0f = "0) and later exploited the property of the
trace under cyclic permutations of the product of matrices. From Eq. (18) we see that the
mismatch amplitude, ⇣ � 1, is invariant over linear beam transport, unless another error
arises along the way.

2.4 The Equivalent Emittance

The ‘equivalent’ rms emittance "̄ is defined as the product of the rms emittance and the
mismatch parameter of the perturbed beam.

"̄ = ⇣" (19)

In the absence of perturbations, " = "0, ⇣ = 1, and the equivalent emittance is the same as
the unperturbed emittance "̄ = "0.

The quantity "̄�" has a compelling physical interpretation as a ‘potential’ rms emittance
growth. Suppose that downstream of the error source, which has changed the unperturbed
rms emittance from "0 to " and introduced the mismatch ⇣ > 1, the beam motion is stable
but the transport line has some anharmonicities. Over a long enough beam transport,
these will cause the beam to filament and the beam emittance to grow further, toward
"̄. It can be shown [11] that the equivalent emittance is the upper limit to the filamented
beam emittance, eventually reached when the beam settles on an equilibrium matched to the
lattice. Incidentally, notice that as the product of linearly invariant quantities, the equivalent
rms emittance is itself an invariant under linear transport.

From the definition (19) and (16) we have

"̄

"0
=

"

2"0
(�0� � 2↵0↵ + �0�). (20)

Making use of the definitions of the Twiss beam parameters, � = h(x0 + �x)2i/", ↵ =
�h(x0 +�x)(x0

0 +�x0)i/", and � = h(x0
0 +�x0)2i/", we can rewrite Eq. (20) as

"̄

"0
=

1

2"0

⇥
�0h(x0

0 +�x0)2i+ 2↵0h(x0 +�x)(x0
0 +�x0)i+ �0h(x0 +�x)2i

⇤
. (21)

If the correlations of Eq. (5) are all zero, such as produced by an error which generates
coupling from an orthogonal bunch coordinate, this reduces to the following expression for
the relative equivalent emittance change:

"̄

"0
� 1 ⌘ �"̄

"0
=

1

2"0

�
�0h�x02i+ 2↵0h�x�x0i+ �0h�x2i

�
. (22)

We can also recognize the case of the ‘point-like’ kick, where h�x�x0i2 = h�x2ih�x02i, as
shown in Eq. (11), and rewrite this as

�"̄

"0
=

1

2"0�0

h
h�x2i+

�
↵0h�x2i1/2 + �0h�x02i1/2

�2i
. (23)
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For a more general result we will no longer assume uncorrelated initial coordinates, but
for simplicity allow for only angular errors, �x = 0. Setting �x = 0 in (21) we have

"̄

"0
=

1

2

"

"0

✓
�0

h(x0
0 +�x0)2i

"
+ 2↵0

hx0(x0
0 +�x0)i
"

+ �0
hx2

0i
"

◆
, (24)

which can be reduced to

�"̄

"0
=

1

2

�0

"0
h�x02i+ �0

"0
hx0

0�x0i+ ↵0

"0
hx0�x0i. (25)

We now see the presence of the correlation terms, hx0
0�x0i and hx0�x0i, which were assumed

to be zero in the previous section (see Eq. (5)). If the angular kicks, �x0, are due to cross-
plane coupling, dispersion, or wakefields, etc., where the kicks are completely uncorrelated
with the phase space coordinates, x0 or x0

0, then the two correlation terms in Eq. (25) are
each zero and Eq. (25) reduces to Eq. (15), but now exact as the equivalent emittance.

Taking the more general case where �x0 is correlated with x0 (and therefore also corre-
lated with x0

0 through a non-zero value of ↵0) in the form �x0 = axn
0 , such as produced by

a quadrupole (n = 1), sextupole (n = 2), or octupole magnet (n = 3), etc., with n as an
integer and a an arbitrary constant, and substituting into Eq. (25) we have

�"̄

"0
=

1

2

�0

"0
h�x02i+ a

�0

"0
hx0

0x
n
0 i+ a

↵0

"0
hxn+1

0 i. (26)

To show that the two correlation terms on the RHS cancel, we now express x0
0 as a sum of

x-correlated and x-uncorrelated terms:

x0
0 = x0

u �
↵0

�0
x0, (27)

where x0
u is a random coordinate (the intrinsic angular spread), which is by definition un-

correlated with x0 to all orders (hx0
ux

n
0 i = 0), and the coe�cient, �↵0/�0, is the standard

phase space slope of a tilted ellipse. Substituting Eq. (27) into Eq. (26) gives

�"̄

"0
=

1

2

�0

"0
h�x02i. (28)

This shows that the initial correlations have no e↵ect on the equivalent emittance if we exam-
ine the beam at a location where we have angular kicks only (�x = 0), such as immediately
after a thin-lens error, or the case with both angular and position errors, but these originate
from some orthogonal coordinate, such as y, y0, z, or � (i.e., when Eq. (5) holds). These are
the conditions we will assume in the sections to follow, where we estimate various emittance
growth mechanisms. Note that with this definition, a quadrupole gradient error will increase
the equivalent emittance through the matching error, although not an actual rms emittance
increase, as we will discuss in the next section.

As mentioned, Eq. (28) is the same as Eq. (15), but now includes the mismatch and is ac-
curate even for large emittance growth. We will use these forms, Eqs. (22), (23), and (28), to
evaluate the equivalent emittance increase for various beamline errors, including quadrupole
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gradient errors, magnet misalignments, anomalous dispersion, field harmonics, sextupole
aberrations, Coulomb scattering, synchrotron radiation, wakefields, etc. The reader should
be aware that these formulas may not agree with particle tracking results, especially if the
e↵ect is large, unless the equivalent emittance (e.g., Eq. (22)) is calculated, and not the
standard emittance of Eq. (6).

For tolerance calculations, where the relative emittance growth for each beamline com-
ponent must be held to very small levels, the equivalent and standard emittance values are
nearly identical, as shown by comparing Eqs. (15) and (28), so there would seem to be little
advantage in the use of the equivalent emittance. However, the equivalent emittance is a
more general quantity and can easily be calculated without need to work out the various
coordinate correlations, such as hx0�x0i, as discussed above. In addition it includes the
matching error, which may chromatically filament over a long transport line and become
an actual emittance increase. Finally, it allows tolerance estimates on parameters, such as
quadrupole magnet gradient errors, which do not impact the emittance directly, but intro-
duce a matching error and a potential to evolve into an increased emittance. These features
motivate us to use the equivalent emittance for evaluation of the various dilution mechanisms
described in the next sections.

3 Emittance Growth Mechanisms

We now present many examples of emittance dilution mechanisms and calculate the equiva-
lent relative emittance growth for each case. Each of these emittance growth formulas were
checked using the particle tracking code Elegant [19], or against actual measurements, al-
though not exhaustively, so the expressions should be accurate and hopefully useful to the
reader interested in single component emittance growth or tolerance estimates. Note that
the expressions are meant to provide a guideline for emittance growth estimates for well-
behaved initial beam distributions, and are not meant to cover multiple component errors, or
arbitrarily distorted and coupled input beams. In addition, many thin-lens approximations
are applied, so some extreme cases, such as the final focusing element of a linear collider,
may not be so well suited for this analysis.

3.1 Transverse Momentum Dispersion Errors

3.1.1 First-Order Angular Dispersion

We start with a simple case, such as a strong steering coil with bend angle ✓0, which generates
an angular dispersion. Using Eq. (28) with �x0 = �✓0�, where � is the small (|�| ⌧ 1),
random, relative energy deviation (� ⌘ �E/E) of each electron with respect to the mean
energy. This forms the energy spread in the beam. The equivalent emittance for angular
dispersion (e.g., a steering coil of angle ✓0) is

�"̄

"0
=

1

2

�0

"0
✓20�

2
� , (29)
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where the rms relative energy spread is h�2i1/2 ⌘ ��, with h�i = 0. We can also cancel "0
on each side, finding �"̄ = 1

2�0✓20�
2
� , and showing that this dispersion error generates an

additive emittance (not multiplicative), since �"̄ is independent of "0. Such an error might
also be attributed to a dipole magnet roll angle error which kicks the beam out of its bend
plane. In this case the angle is interpreted as a nominal bend, ✓0, and the out-of-plane kick
error in Eq. (29) is replaced as ✓0 ! �✓0, where � is the (small) roll angle error around
the beam direction (|�| ⌧ 1). Of course trajectory correction, if applied locally, can remove
such a kick.

3.1.2 First-Order Spatial and Angular Dispersion

Moving to a more general case with both spatial, �⌘, and angular, �⌘0, dispersion errors [6]
and using Eq. (22) or (23) with �x = �⌘� and �x0 = �⌘0� we have

�"̄

"0
=

1

2"0
(�0�⌘02 + 2↵0�⌘�⌘0 + �0�⌘2)h�2i. (30)

We can also express this using �0 = (1 + ↵2
0)/�0, and the rms relative energy spread as:

h�2i1/2 ⌘ �� and write

�"̄

"0
=

1

2�0"0
[�⌘2 + (↵0�⌘ + �0�⌘0)2]�2

� . (31)

The emittance e↵ect is reversible, as long as no new source of energy spread occurs after
the �⌘, �⌘0 error (e.g., due to an accelerating section which might wash out the energy-x
correlations). Dispersion increases the time-projected emittance if the energy spread, ��, is
dominantly time-correlated (e.g., a chirped condition). Note that the two quantities �⌘ and
(↵0�⌘ + �0�⌘0) have the same units and are in fact the two orthogonal parameters that
should be minimized with tuning algorithms, and not the combination �⌘ and �⌘0, which
are independent but not orthogonal (unless ↵0 = 0).

3.1.3 Second-Order Dispersion

The section above on linear dispersion assumes that the dispersion error introduces a linear
correlation within the electron bunch between particle energy and transverse position and/or
angle. More complicated optical systems, such as a linear achromat with strong focusing, a
sextupole magnet in a bend system, or a quadratic dipole field variation over the transverse
dimension in a bend magnet, can generate second-order dispersion [9] with kicks such as
�x0 ⇠ �2 and/or �x ⇠ �2. To evaluate this e↵ect we again use Eq. (22) with �x = �⌘2�2

and �x0 = �⌘02�
2. Here �⌘2 and �⌘02 are the second-order spatial and angular dispersion

errors, respectively (also referred to as the T-matrix elements: T166 and T266). Note here
that we now have non-zero centroid values, h�xi ⇠ h�2i, and h�x0i ⇠ h�2i, so we need to
include this mean value in both position and angle by replacing in Eq. (22) the following

h�x2i ! h�x2i � h�xi2 = �⌘22(h�4i � h�2i2),
h�x�x0i ! h�x�x0i � h�xih�x0i = �⌘2�⌘02(h�4i � h�2i2), (32)

h�x02i ! h�x02i � h�x0i2 = �⌘022 (h�4i � h�2i2).
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Now we need to know the fourth moment and the square of the second moment of the energy
distribution, h�4i and h�2i2 = �4

� . Evaluating the fourth moment requires knowledge of the
energy distribution, so will start by assuming a uniform distribution where h�4i = 9

5�
4
� .

With this choice, the equivalent emittance for a second-order dispersion error (in position
and angle), using Eq. (22), but modified for non-zero mean values as described above, is

�"̄

"0
=

2

5

1

�0"0
[�⌘22 + (↵0�⌘2 + �0�⌘02)

2]�4
� , (33)

which is additive and reversible, a↵ecting only the time-projected emittance if the beam
is chirped and has an insignificant intrinsic energy spread. For comparison, a Gaussian �-
distribution has a fourth moment which is related to the square of its second moment as
h�4i = 3�4

� and the factor 2/5 in Eq. (33) is replaced by 1 for a Gaussian energy profile.
Note that in this treatment the specific distribution functions are only needed when higher
than second moments arise, and we will apply symmetric distributions, such as Gaussian
and uniform, which have odd moments that are zero (e.g., h�3i = 0).

3.1.4 Third-Order Dispersion

We can do the same analysis for third-order dispersion (since we have real measurements for
this case), again using Eq. (22) and now with �x = �⌘3�3 and �x0 = �⌘03�

3, where �⌘3
and �⌘03 are third-order dispersion errors (also referred to as U-matrix elements: U1666 and
U2666). Assuming a uniform energy distribution where h�6i = 27

7 �
6
� and h�3i = 0 (which now

sets h�xi = h�x0i = 0) we have the equivalent emittance for a third-order dispersion error
as

�"̄

"0
=

27

14

1

�0"0
[�⌘23 + (↵0�⌘3 + �0�⌘03)

2]�6
� , (34)

which is also additive and reversible, typically a↵ecting only the time-projected emittance.
For comparison, a Gaussian �-distribution has third and sixth moments: h�3i = 0 and
h�6i = 15�6

� , replacing the factor 27/14 in Eq. (34) with 15/2 for a Gaussian energy dis-
tribution. Figure 5 [10] shows an example emittance optimization in the SLAC linac using
octupole magnets to cancel anomalous third-order dispersion errors coming from the SLC
bunch compressor (as described in the caption). Note that Eq. (34) predicts quite well the
equivalent emittance increase, "̄, but Fig. 5 shows the standard emittance, ". However, it is
clear comparing Eqs. (15) and (28) that for a small relative emittance increase the equivalent
emittance growth is approximately the same as the standard emittance growth.

3.2 Quadrupole Magnet Gradient Error

Although not a cause of immediate emittance growth, it is useful to examine the e↵ect of
a quadrupole magnet field gradient error on the equivalent emittance to get an estimate
of its sensitivity, for example, against power supply current regulation errors or field cal-
ibration. To be general, we assume the quadrupole magnet is located at a point in the
beamline which includes horizontal bend magnets, so the electron’s horizontal position in
the quadrupole magnet has a contribution, x, from the initial emittance, and a component,
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Figure 5: Measured horizontal (normalized) emittance versus third-order spatial dispersion,
�⌘3, adjusted using a pair of octupole magnets in the SLC bunch compressor. A linear com-
bination of octupole magnet settings is calibrated in meters of third-order spatial dispersion
after the compressor, at the start of the SLAC linac. The observed emittance reduction (from
�⌘3 = 0 to �⌘3 = �50 m) is 14%, while Eq. (34) predicts 16%. The beam parameters are:
E ⇡ 1.2 GeV, �"0 ⇡ 28 µm, �0 ⇡ 3 m, and the collimated energy profile is approximately
uniform here with rms value of �� ⇡ 1%.

14



⌘�, from the dispersion of the electron’s small energy deviation, forming random kick errors,
�x0 = �G

G0
(x0 + ⌘�)/f0, where f0 is the quadrupole magnet’s focal length at � = 0 (ignoring

2nd-order e↵ects for now), and �G/G0 is the small relative gradient error of the magnet
with respect to its design setting. We also assume a thin-lens quadrupole (focal length
much longer than magnetic length) and write ⌘ here as the nominal ‘design’ dispersion, as
opposed to �⌘ which indicates a dispersion error. Note that by explicitly separating the
initial horizontal position into x0 and ⌘� contributions, the correlation term, hx0�i, is zero
by definition, and this definition is used throughout this article. Note also that we have a
correlation case here, where hx0�x0i 6= 0, breaking Eq. (5), and requiring the use of the
equivalent emittance, which is valid even with such correlations.

Since�x = 0 here (i.e., only angular kick errors immediately after the thin-lens quadrupole
magnet), we use Eq. (28) to calculate the equivalent emittance of a quadrupole gradient
error, and to be more clear we also begin labeling parameters as horizontal, x, or vertical,
y, at this point, since some errors a↵ect both planes simultaneously.

�"̄x
"x0

=
1

2

✓
�G

G0

◆2 �2
x0

f 2
0

(1 + ⇠2) (35)

�"̄y
"y0

=
1

2

✓
�G

G0

◆2 �2
y0

f 2
0

(36)

Here the following definition of ⇠2 is introduced (below) with ⌘ always defined as the horizon-
tal (bend-plane) nominal dispersion function at the component of interest (i.e., the nominal
vertical dispersion is always assumed to be zero).

⇠2 ⌘ ⌘2�2
�

�x0"x0
(37)

The quantity, ⇠2, characterizes the beam in the horizontal plane (bend-plane) as either
dispersion dominated (⇠2 � 1) or emittance dominated (⇠2 ⌧ 1), and Eq. (35) is valid
in either case. Gradient errors are multiplicative (�"̄ proportional to "0), unless ⇠2 � 1,
and reversible if corrected before chromatic filamentation occurs [11] (a washing out of
initial correlations due to beam propagation in a long transport line with a finite energy
spread). Of course, the gradient error also a↵ects the vertical plane and this is indicated
in Eq. (36), scaled with the vertical beta function, �y0. Finally, if the quadrupole magnet
has a nominal gradient of zero (G0 = 0), for example a small tuning magnet in a chicane
included to allow empirical dispersion correction, then Eq. (35) and (36) can still be used
by setting �G/G0 = 1 and using the quadrupole’s finite focal length setting, f0, to estimate
the equivalent emittance growth.

3.3 Magnet Alignment Errors

3.3.1 Quadrupole Magnet Transverse O↵set

Magnet alignment is critical in linac-based FELs with small errors potentially building up to
a large emittance growth and mismatch. It is worth developing a single magnet sensitivity
estimate so that the more problematic magnets are identified and possibly mitigated early.
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Figure 6: An example quadrupole magnet o↵set with steering coils use to correct the or-
bit, leaving only the dispersion generated by the quadrupole. Such a case may arise after
trajectory correction if the beam position monitor in the quadrupole were o↵set by xQ.

A small transverse o↵set, xQ, of a quadrupole magnet introduces a dispersion error,
�x0 = �xQ�/f0, where f0 is its nominal focal length, and � represents the first-order energy
dependence of the quadrupole focal length, f = f0(1+�). Of course the magnet misalignment
also steers the beam centroid and so we assume, for simplicity, the electron trajectory is
corrected in such as way as to leave only the dispersion error from the quadrupole itself, as
shown in Fig. 6. More complicated scenarios are possible, with dispersion-free steering or
cases where the steering coils add to the dispersion error, but we use this simple, and not
unrealistic case to allow quick estimates of quadrupole magnet alignment tolerances. The
equivalent emittance for a horizontally o↵set quadrupole magnet is calculated using Eq. (28),
where we assume the following initial correlations are zero: hxyi = 0 (no initial coupling),
hx�i = 0 (by definition of ⌘), and hy�i = 0 (by assuming no vertical bend magnets).

�"̄x
"x0

=
1

2

�x0

"x0

✓
xQ

f0

◆2

�2
� (38)

The equivalent emittance is dependent on the square of the misalignment, the square of the
focal length, and the square of the relative energy spread. The e↵ect is additive, reversible,
and typically impacts the projected emittance, exactly as in the case of Eq. (29). The vertical
emittance growth for a vertical misalignment, yQ, is identical to Eq. (38) by replacing all x
with y.

3.3.2 Quadrupole Magnet Roll Angle

A quadrupole magnet may also have a roll angle error (rotated around the beam direction
by �). This generates x-y coupling in the beam and has an impact on the emittance in both
planes. Assuming the quadrupole is, again, located in a horizontal bend section (⌘ 6= 0),
the kicks in the vertical plane are �y0 = sin(2�)(x0 + ⌘�)/f0, and in the horizontal plane
�x0 = � sin(2�)y0/f0 (assuming a thin-lens quad and only horizontal dispersion present in
the design optics). Note that y0 is the vertical position coordinate of an electron entering
the magnet, and the case with � = ±⇡/4 converts this normal quad to a skew quad. The
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equivalent emittances in each plane for a rolled quadrupole magnet are calculated using Eq.
(28).

�"̄x
"x0

=
1

2
sin2(2�)

�x0�y0

f 2
0

✓
"y0
"x0

◆
(39)

�"̄y
"y0

=
1

2
sin2(2�)

�x0�y0

f 2
0

✓
"x0
"y0

◆�
1 + ⇠2

�
(40)

Here "x0 and "y0 are the initial horizontal and vertical emittance values before the rolled
magnet, respectively, and ⇠2 is the horizontal dispersive term defined in Eq. (37). Note that
the emittance increase depends on the product of the x and y beta functions in the quad,
and the ratio of the initial x and y emittance values, which may be a very sensitive error for
flat beams ("x0/"y0 � 1) in a linear collider. Since the emittance increase is proportional to
the initial emittance (out of plane), these might be described as multiplicative e↵ects (for
⇠2 ⌧ 1). They are also correctable if the correlations remain in tact. This coupling a↵ects
the time-sliced emittance, unless ⇠2 � 1 and the energy spread is chirped, in which case the
vertical emittance growth becomes an additive e↵ect equivalent to the angular dispersion
error described in Eq. (29).

3.3.3 Sextupole Magnet Transverse O↵set

Sextupole magnets are used to correct chromatic focusing errors or linearize bunch com-
pression, etc. Whereas a misaligned quadrupole magnet produces steering and dispersion, a
misaligned sextupole magnet can generate all of these, plus x-y coupling and a beta-mismatch
error. The vertical field of a normal sextupole magnet [12] is By = 1

2K2(x2 � y2)p/e, while
the horizontal field is Bx = �K2xyp/e, with K2 (m�3) related to the second derivative of
the transverse field: K2 ⌘ (@2By/@x2)e/p, p is the electron momentum, and e is the electron
charge. Allowing again for a nominal horizontal dispersion, ⌘, at the sextupole location,
and a misalignment in each plane (xs and ys), we replace x0 with x0 + ⌘� � xs, and y0 with
y0 � ys. We can then represent the resulting kick in each plane as

�x0 = ByLe/p =
1

2
K2L

⇥
x2
0 + 2⌘x0� + ⌘2�2 � y20 � 2xsx0 � 2xs⌘� + x2

s + 2ysy0 � y2s
⇤
, (41)

�y0 = BxLe/p = �K2L [x0y0 + ⌘y0� � ysx0 � ys⌘� � xsy0 + xsys] , (42)

where L is the sextupole magnet length. We can now ignore all 2nd-order terms (x2
0, x0�,

�2, y20, y0�, and x0y0) which are not dependent on alignment and should anyway cancel
with the surrounding optics (the whole reason the sextupole magnet is there), and we also
ignore constant terms, x2

s and y2s , which represent simple beam steering, but we keep all
linear alignment dependent terms such as: xsx0, xs�, xsy0, ysy0, ysx0, and ys� and write the
remaining, error-driven kicks as

�x0 = �K2L [xs(x0 + ⌘�)� ysy0] , (43)

�y0 = K2L [xsy0 + ys(x0 + ⌘�)] . (44)
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The equivalent emittances in each plane for a misaligned (xs and ys) thin sextupole are again
calculated using Eq. (28).

�"̄x
"x0

=
1

2
K2

2L
2�2

x0

⇥
x2
s(1 + ⇠2) + y2s�

2
⇤
, (45)

�"̄y
"y0

=
1

2
K2

2L
2�x0�y0

✓
"x0
"y0

◆⇥
x2
s�

2 + y2s(1 + ⇠2)
⇤
, (46)

where the horizontal dispersive term, ⇠2, is defined in Eq. (37), and we also introduce a new
parameter, �2, which is the square of the ratio of the vertical to horizontal (monochromatic)
beam size (i.e., does not include the horizontal dispersive contribution to the horizontal
beam size).

�2 ⌘ �y0"y0
�x0"x0

(47)

The emittance e↵ect is additive if ⇠2 � 1, and multiplicative if ⇠2 ⌧ 1. Since the misaligned
sextupole generates dispersion, x-y coupling, and a beta-mismatch, it is reversible. However,
special care should be taken when introducing a sextupole magnet to a beamline. Misalign-
ments will generate correlations in the beam which are not easily corrected downstream
unless provisions are made, or the sextupole magnet is adequately aligned.

3.4 Skew Quadrupole Coupling

Cross-plane coupling can be generated by rotated quadrupole magnets or o↵set sextupoles,
so it may be useful to add skew quadrupole magnets to the beamline to allow empirical
corrections. To be general, we assume a skew-quad is located at a point in the beamline
with nominal horizontal dispersion, ⌘. Like a normal thin-lens quadrupole magnet with
an inverse focal length, 1/f0 = GLe/p, where G is the field gradient and L is the magnet
length, the skew-quad adds cross-plane kicks as �x0 = �y0/f0 and �y0 = (x0 + ⌘�)/f0. The
equivalent emittances in each plane for a skew-quadrupole magnet are again calculated using
Eq. (28).

�"̄x
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�x0�y0
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, (48)
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0
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�
, (49)

with ⇠2 defined in Eq. (37).
Figure 7 shows an example of vertical emittance correction using a skew-quadrupole

magnet located in the LCLS first bunch compressor chicane. The parameters are listed
in the caption and Eq. (49) predicts a 14% emittance change going from from GL = 0
to GL = 0.022 kG, which is quite comparable to the measured change of 15%. And we
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Figure 7: An example vertical (normalized) emittance measurement as a function of skew
quadrupole strength. The emittance was reduced by 15% by setting the skew-quad strength
(length-integrated field gradient, �GL) from zero to 0.022 kG. The beam parameters are:
E ⇡ 220 MeV, �"x0 ⇡ �"y0 ⇡ 0.6µm, �x0 ⇡ 3 m, �y0 ⇡ 8 m, ⌘ ⇡ 180 mm, �� ⇡ 1.2% and
f ⇡ 330 m at GL = 0.022 kG.

note again here that the equivalent emittance growth is approximately equal the standard
emittance growth for a small relative emittance increase. The e↵ect can be quite sensitive
for a flat beam ("y0/"x0 ⌧ 1), such as in a linear collider, and the vertical emittance growth
may be very sensitive, especially if ⇠2 � 1. These formulas reduce to those of the rolled
quadrupole magnet, Eq. (39) and (40), if � = ±⇡/4.

3.5 Magnet Field Quality Errors

Real magnets will include unwanted multipole field errors, such as a weak sextupole field in
a dipole magnet (see Fig. 8). These multipoles can introduce chromatic and/or geometric
optical aberrations, which can degrade the emittance. We introduce a general multipole field
expansion [13] with normal and skew components, Bn and An, as the real and the imaginary
parts of the expansion coe�cients.

By + iBx =
1X

n=0

(Bn + iAn)

✓
x+ iy

r0

◆n

(50)

Here r0 is a reference radius usually similar to the probe size used to measure the field
harmonics (e.g., 2/3 of the bore radius), and n is the harmonic number, where the number
of poles is: 2n + 2 (n = 0: dipole, n = 1: quadrupole, n = 2: sextupole, n = 3: octupole,
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n = 4: decapole, and n = 5: dodecapole). For example, a weak normal sextupole field error
(e.g., n = 2, B2 6= 0, A2 = 0) in a dipole magnet (typically due to insu�cient pole width) can
be described using Eq. (50) as By = B2(x2 � y2)/r20, and we can normalize this sextupole
component to the main dipole field, B0, as a relative error B2/B0, typically a small fraction
such as 0.1%, depending on the probe radius, r0, used. We next apply this expansion to
some specific cases of multipole errors in standard magnets (quadrupoles and dipoles).

3.5.1 Quadrupole Field Error in a Dipole Magnet

A small quadrupole field component error may arise in a dipole magnet, possibly due
to slightly canted pole angles. This field error appears as a simple linear field gradient,
@By/@x 6= 0, in the bend magnet. We begin by defining the main (vertical) dipole field
as B0, and the fractional quadrupole field content as |B1/B0| ⌧ 1 (evaluated at some ra-
dius r0). From Eq. (50) the additional vertical field due to the small normal quadrupole
component is: �By = B1x/r0, and the horizontal kicks are �x0 = ��ByLe/p, where L is
the length of the dipole magnet. We then introduce the dipole’s nominal (horizontal) bend
angle, ✓0 = B0Le/p, and also include the possibility of a nominal dispersion function at
the bend, ⌘, resulting in kicks of: �x0 = �✓0(B1/B0)(x0 + ⌘�)/r0. The vertical kicks are:
�y0 = ✓0(B1/B0)y0/r0, and the equivalent emittance, again using Eq. (28), for each plane
for this normal quadrupole field component error in a thin dipole magnet is

�"̄x
"x0
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2
✓20

✓
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◆2 �2
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r20
(1 + ⇠2), (51)
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where ⇠ is defined in Eq. (37).
For strong dipoles with large dispersion and significant energy spread, ⇠2 � 1, such

as a bunch compressor dipole magnet, the tolerable level of quadrupole error can be very
demanding. For beam parameters such as in the LCLS second bunch compressor chicane
(E ⇡ 4.3 GeV, ✓0 ⇡ 0.035, �"x0 ⇡ 0.5 µm, �x0 ⇡ 30 m, ⌘ ⇡ 360 mm, �� ⇡ 0.5%),
the horizontal emittance increase is 7% for a quadrupole field error of |B1/B0| = 0.1%
measured at r0 = 30 mm. Note that the field error tolerance, |B1/B0|, doubles in value if
the reference radius, r0, doubles. In order to allow evaluation, the measured field errors must
always be accompanied by the relevant probe radius, r0, used during field measurements. In
comparison, the vertical emittance growth is completely insignificant here, �"̄y/"y0 < 0.01%,
since the beam is not dispersed in this direction (i.e., the nominal dispersion, ⌘, is only in
the horizontal plane for these examples). Finally, the quantity (B1/B0) is typically based on
magnetic measurements, but may be less accessible to some, so we also express this quantity
in more familiar terms: (B1/B0) = K1r0L/✓0, where K1 ⌘ (@By/@x)e/p, with p as the
electron momentum, and e as the electron charge.
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3.5.2 Sextupole Field Error in a Dipole Magnet

A small sextupole field error is common in a dipole magnet, possibly due to pole widths
which are too small with respect to the typical highly dispersed bend-plane beam size in the
magnet (see Fig. 8). From Eq. (50) the additional vertical field due to the small sextupole
component is: �By = B2[(x0 + ⌘�)2 � y20]/r

2
0 and the additional horizontal field is: �Bx =

2B2(x0+⌘�)y0/r20. The horizontal kicks are �x0 = �ByLe/p = ✓0(B2/B0)[(x0+⌘�)2�y20]/r
2
0

and the vertical kicks are �y0 = ��BxLe/p = �2✓0(B2/B0)(x0 + ⌘�)y0/r20. However, once
again, as in the treatment of 2nd-order dispersion (see Eq. (33)), the mean horizontal kick
is not zero here: h�x0i = ✓0(B2/B0)(hx2

0i+ ⌘2h�2i � hy20i)/r20, where hx0�i = 0 by definition.
However, the mean vertical kick is zero if: hx0y0i = 0 and hy0�i = 0 (i.e., no initial x-y
coupling and no vertical dispersion). To include the non-zero mean, we rewrite Eq. (28) as
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h�x02i � h�x0i2

�
. (53)

The first moment squared and the 2nd-moment of the horizontal kicks are
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where we assume a symmetric distribution such that hx3
0�i = 0, hx0�3i = 0, and hx0y20�i = 0.

Next we separate the uncorrelated variables such that hx2
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2
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h�x02i � h�x0
0i2 =

✓20
r40

✓
B2

B0

◆2 ⇥
hx4

0i � hx2
0i2 + 4⌘2hx2

0ih�2i+ ⌘4
�
h�4i � h�2i2

�
+ hy40i � hy20i2

⇤
. (56)

We also assume all Gaussian distributions where hx4
0i = 3hx2

0i2, hy40i = 3hy20i2, and h�4i =
3h�2i2 and the equivalent emittance in each plane, now using Eq. (53), for this normal
sextupole field component error in a thin dipole magnet is
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Here ⇠2 and �2 are defined in Eq. (37) and (47), we assume Gaussian distributions in x, y,
and �, and no initial coupling or vertical dispersion, hx0y0i = 0 and hy0�i = 0.
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Figure 8: Relative field error in LCLS BC2 dipole magnet measured over horizontal po-
sition, x, showing a field error of B2/B0 = �0.1% at r0 = 30 mm. With the beam
parameters described above, this sextupole field error should only generate a 2% bend-
plane emittance increase for this one magnet. The horizontal rms beam size in the magnet,
�x =

p
�x0"x0(1 + ⇠2), is indicated out to ±3�x.

For beam parameters such as in the LCLS second bunch compressor chicane (E ⇡ 4.3
GeV, ✓0 ⇡ 0.035, �"x0 = �"y0 ⇡ 0.5 µm, �x0 ⇡ 30 m, �y0 ⇡ 16 m, ⌘ ⇡ 360 mm, �� ⇡ 0.5%),
the horizontal emittance increase is 2% for a sextupole field error of |B2/B0| = 0.1% measured
at r0 = 30 mm (see Fig. 8). The vertical emittance growth is completely insignificant (<
0.001%) since the beam is not dispersed vertically. Finally, the quantity (B2/B0) is typically
based on magnetic measurements, but may be less accessible to some, so we also express this
quantity in more familiar terms: (B2/B0) =

1
2K2r20L/✓0, where K2 ⌘ (@2By/@x2)e/p, with

p as the electron momentum, and e the electron charge.

3.6 Chromaticity of a Quadrupole Magnet

The focal length, f , of a quadrupole magnet is dependent on the electron relative energy
deviation, |�| ⌧ 1. The kicks from a thin-lens quadrupole magnet with significant energy
spread are

�x0 =
x0

f0(1 + �)
⇡ x0(1� �)

f0
, (59)

where f0 is the focal length at � = 0. We can ignore the x0/f0 term here as the nominal
focusing, and instead concentrate on the energy dependent error: �x0 = �(x0 + ⌘�)�/f0,
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Figure 9: The focal length, f , of a quadrupole magnet is dependent on the relative energy
deviation, �, indicated here as color variations.

where we have replaced x0 with x0+⌘� to include a possible nominal (horizontal) dispersion
at the quadrupole. The vertical kicks are of the same form but with ⌘ = 0. We also note that
this 2nd-order e↵ect (chromatic aberration) generates a non-zero mean value of the kicks:
h�x0i = �⌘h�2i/f0, and we need to use the equivalent emittance form of Eq. (53) with the
result

�"̄x
"x0

=
1

2

�2
x0

f 2
0

�
1 + 2⇠2

�
�2
� , (60)

�"̄y
"y0

=
1

2

�2
y0

f 2
0

�2
� . (61)

The factor of 2 in the second term of Eq. (60) is based on a Gaussian energy distribution
where the fourth moment is related to the square of its second moment as h�4i = 3�4

� , as
used previously. Note that this factor of 2 is replaced by 4/5 for a uniform distribution. This
chromatic evaluation is useful in determining if the quadrupole magnet setting is too strong
with respect to the rms energy spread (��), dispersion, and beta function at that location
(e.g., if �"̄/"0 > 2%). The chromatic aberration can be corrected with sextupole magnets at
dispersive locations (e.g., a 2nd-order achromat [14]) or with more quadrupole magnets and
appropriate placement and strength. Note that we have assumed a thin-lens magnet here
which may be somewhat inaccurate for very strong focusing, for example with focal length
less than or similar to magnet length.

3.7 Sextupole Abberations

A sextupole magnet may be added to a beamline to generate non-linear bunch compres-
sion terms, such as T566. In this case, the bunch compression can be linearized, but the
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sextupole, even if aligned perfectly, will generate transverse geometric, chromatic, and 2nd-
order dispersive aberrations. These can quickly dilute the transverse emittance levels de-
pending on the beta and dispersion functions in the sextupole magnet. As shown above,
the vertical sextupole field can be described as By = 1

2K2(x2 � y2)p/e, while the horizontal
field is Bx = �K2xyp/e, with K2 related to the second derivative of the transverse field:
K2 ⌘ (@2By/@x2)e/p. The horizontal kicks are �x0 = 1

2K2L
⇥
(x0 + ⌘�)2 � y20

⇤
and the verti-

cal are �y0 = K2L (x0 + ⌘�) y0. We see that h�x0i 6= 0, and so need to include this, although
h�y0i = 0. Then using Eq. (53) to find the equivalent emittance growth for both planes

�"̄x
"x0

=
1

4
K2

2L
2�3

x0"x0
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i
, (62)
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y0"x0

�
1 + ⇠2

�
. (63)

This is the relative equivalent emittance growth generated by one well aligned sextupole
magnet located in a horizontal dispersion region and with a significant energy spread. A
sextupole magnet with K2 = 0.5 m�3, length L = 0.1 m, and with �x0 = 12.6 m, �y0 = 11.3
m, ⌘ = 520 mm, �� = 1%, and "N0 = 0.5 µm, produces a horizontal relative equivalent
emittance growth of 10%, but no significant growth in the vertical plane.

3.8 Coulomb Scattering

A thin foil in the beam path may be useful for vacuum isolation or for beam size diagnostics
but the Coulomb scattering of the electrons through the foil material can also degrade the
emittance and generate a mismatch (by adding angular spread to the beam). A thin slotted
foil can also be used to generate a femtosecond or sub-femtosecond x-ray pulse in an FEL
[15]. The rms angular spread generated by a beam with energy, E, is

h�x02i1/2 ⇡ E0

E

r
L

L0

✓
1 +

1

9
log10

✓
L

L0

◆◆
(64)

where E0 ⇡ 14 MeV, L is the thickness of the foil, and L0 is the radiation length of the foil
material. The equivalent emittance using Eq. (28) is
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�0

"0
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L
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◆◆2

, (65)

representing either x or y as needed. For LCLS BC2 beam parameters at chicane center,
E = 4.3 GeV, �0 = 20 m, �"0 = 0.5 µm, and a 3-µm thick Al foil (L0 = 8.9 cm), the
emittance increases by about a factor of 10. Note that Eq. (64) is only accurate within
0.001 < L/L0 < 1000, although not a large error in our case here. This e↵ect is not
correctable since the angular scattering is a stochastic process and is not correlated with any
coordinate within the bunch. Figure 10 shows the measured beam size increase with a 3-µm
thick Al foil roughly consistent with the factor of 10 emittance increase.
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Figure 10: Measured coulomb scattering through a 3-µm thick Al foil located in the LCLS
2nd bunch compressor. The rms vertical beam size downstream of the compressor is 28 µm
at left (foil extracted) and 166 µm at right (foil inserted).

3.9 Incoherent Synchrotron Radiation

Synchrotron radiation is emitted by high-energy electrons as they are bent through a dipole
magnet, generating an additional random energy spread. After emission, electrons with lower
energy will be over-bent, resulting in a dilution of the bend-plane emittance after the dipole
magnet. The rms relative energy spread induced by ISR (incoherent synchrotron radiation,
where the bunch length is much longer than wavelengths which propagate in the vacuum
chamber) generated over a bend magnet of length L and bend radius ⇢ is [16]

�2
� =

55

24
p
3

reh̄c

(mc2)6
E5L

|⇢3| , (66)

where re is the classical electron radius, mc2 is the electron rest mass, h̄ is Planck’s constant
divided by 2⇡, and E is the electron energy. For a given electron energy and small bend
angle (✓0 = L/⇢), a longer bend magnet will reduce the e↵ect (seen by replacing ⇢ in Eq.
(66) with L/✓0).

For incoherent radiation (i.e., � is random with no correlation to other local phase space
coordinates), we calculate the variance of �x, �x0, and their product evaluated at a down-
stream location s0 (just after the bend) and due to the energy spread generated at each
upstream beamline location s < s0, and we sum these in quadrature over the beamline as
uncorrelated quantities [17],

h�x2i =
Z s0

0

R2
16(s)

d

ds
�2
�ds, (67)

h�x02i =
Z s0

0

R2
26(s)

d

ds
�2
�ds, (68)

h�x�x0i =
Z s0

0

R16(s)R26(s)
d

ds
�2
�ds. (69)
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Figure 11: The final dipole magnet of an arbitrary bend system typically terminates the
dispersion function to zero at its exit. However, electrons which change energy just upstream
of, or inside the bend, rather than upstream of the entire bend system, will follow a di↵erent
bend-plane trajectory as shown, where the green trajectory is the on-energy path.

Here R16 is the linear transfer matrix element (dispersion) which maps a small relative
energy deviation, �, originating at s, onto a horizontal position change, �x, observed at s0,
while R26 similarly maps � onto �x0. Here we no longer have ‘point-like’ scattering since
we are integrating contributions over the beam line rather than just one thin component.
The square of the incrementally generated energy spread is represented here by its rate of
change along the beamline (d�2

�/ds). For a bend magnet with constant bend radius (typical)
the rate of increase of the energy spread squared is also constant, as seen in Eq. (66), by
replacing L with s, and so the rate can be removed from the integrals of Eqs. (67), (68),
and (69).

The task of calculating the e↵ect on the equivalent emittance now requires evaluation of
these integrals, but first we need to express R16 and R26 as functions of s, L, and ⇢, which
depend on the particular layout of the bend system. For a simple case we take just the final
dipole magnet of a bend system (e.g., last bend of a symmetric 4-dipole magnetic chicane),
where the dispersion function terminates to zero at its exit, as shown in Fig. 11.

In this case the transfer matrix elements are: R16(s) = � s2

2⇢ and R26(s) = � s
⇢ , and the

variance values in Eqs. (67), (68), and (69), integrated over the bend magnet length, are:
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. (72)

Note that h�x�x0i2 ⇡ h�x2ih�x02i and this nearly ‘point-like’ scattering case is close to
that of Eq. (11) with almost no additive emittance. Inserting these into Eq. (22) gives the
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relative equivalent emittance growth due to ISR for only the final dipole magnet of a bend
system.
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Here "N0 = �"0 is the initial normalized emittance, and d�2
�/ds is taken from Eq. (66) with

s substituted for L and then di↵erentiated with respect to s, and we have replaced ⇢ with
L/✓0. Note that �0 here is the Twiss parameter, �0 ⌘ (1+↵2

0)/�0, with �0 and ↵0 evaluated
at the exit of the bend.

Equation (73) is for ISR in one bend only, but shows the sensitivity to electron energy
(E6), bend angle (|✓50|), and bend magnet length. Long bends will reduce the emittance
growth, but the final term in parenthesis (�0L2/20) suggests a limit to this direction, de-
pending on the Twiss parameters immediately after the bend. An optimum might be derived,
but with only one bend included here it is not a meaningful exercise. The case of a full 4-
dipole chicane is calculated below. Finally, it is important to recognize that ISR is not error
driven. It is an issue that must be handled in the optics design and cautions the use of large
bend angles at high energy.

For parameters of the LCLS BC2 compressor (set to its maximum strength) with E = 4.3
GeV, �0 = 5 m, ↵0 = �0.5, "N0 = 0.5 µm, L = 0.54 m, |✓0| = 35 mrad, the relative equivalent
emittance increase is about 0.015%.

For completion, we also present here the ISR results for an entire 4-dipole chicane, with
LT as the total length of the chicane, �L as the edge-to-edge spacing of the first two (and last
two) bends, and using ⇤2 as defined below. The second moments of the electron positions
and angles immediately after the chicane are based on the R16 and R26 integrals over all four
bends and are given as:
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�

ds

Z
R2

16(s)ds =
L3⇤2

30⇢2
, (74)
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3⇢2
, (75)

h�x�x0i = d�2
�

ds

Z
R16(s)R26(s)ds =

2LTL3

3⇢2
, (76)

with the definition

⇤2 ⌘ 10LT (�L� L) + 25�LL+ 16L2 + 20L2
T + 20�L2. (77)

The equivalent relative emittance growth due to ISR in all four bends of a chicane , substi-
tuting Eqs. (74), (75), and (76) into Eq. (22), is:
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, (78)

Note again that �0 ⌘ (1+↵2
0)/�0, with �0 and ↵0 evaluated at the exit of the chicane. Using

the LCLS BC2 chicane parameters described above, and including the full chicane length,
LT = 22.4 m, and each of two drift lengths, �L = 10 m, the relative equivalent emittance
increase over the full chicane is about 1.0%, which would scale up to 7% at 6 GeV. The rms
relative energy spread induced by ISR in the full chicane at 4.3 GeV is only 6 ⇥ 10�6.
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3.10 Coherent Synchrotron Radiation

The synchrotron radiation from a bend magnet can be coherent if the electron bunch length
is short compared to the longest wavelengths which can propagate in the vacuum chamber.
With respect to incoherent radiation where the power scales as N , the coherent radiation
power scales by N2, where N is the number of electrons in the bunch. The high-power
radiation from the tail of the bunch can catch up to the head of the bunch as it cuts across
the cord of the curved (bending) trajectory and can alter the energy of the various temporal
slices of the bunch as it passes through the bend, ultimately steering each slice di↵erently
after the bend, and diluting the bend-plane emittance [21].

The approximate rms relative energy spread induced by CSR (coherent synchrotron ra-
diation) generated over a bend magnet of length L and bend radius ⇢ (assuming a Gaussian
temporal bunch profile and steady-state conditions) is [18]

�� ⇡ 0.22
remc2NL

E⇢2/3�4/3
z

, (79)

where re is the classical electron radius, E is the electron energy, and �z is the rms bunch
length in the bend (assumed constant here). Again we can define the rate of energy spread
increase using Eq. (79), substituting s for L, and di↵erentiating with respect to s. In this
case (i.e., CSR) the energy spread increases linearly with distance, s, whereas with ISR the
square of the energy spread increases linearly with distance (see Eq. (66)).

For this CSR wakefield e↵ect, where a particle’s energy deviation at the end of the bend
system is purely a function of its longitudinal position along the bunch, z, the transverse
coordinate shifts, �x(z), which are observed at the end of the bend but originate at each
location, s, add linearly, so we first sum �x(z) over the bend length and then find its total
variance.
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(80)

h�x02i =
✓Z 0

�L

R26(s)
d��

ds
ds

◆2

(81)

Due to the coherence and steady-state assumption, the correlation h�x�x0i2 = h�x2ih�x02i,
and we have the ‘point-like’ kicks of Eq. (11). The di↵erence between the incoherent and
the coherent process is now clear as the ISR integrals in Eqs. (67), (68), and (69), represent
a monotonically increasing summation of positive values, whereas the CSR integrals of Eqs.
(80) and (81), are a summation of signed quantities which might be made to vanish [17].

Again, for a dipole magnet with constant bend radius and assuming the bunch length
does not change in this last bend magnet (typical in bunch compressor chicanes), the rate
of increase of the energy spread is then constant, as seen in Eq. (79), by replacing L
with s. So once again the rate can be removed from the integral here. Evaluating the
equivalent emittance again requires substituting Eqs. (80) and (81) into Eq. (23) with
h�x�x0i2 = h�x2ih�x02i, and the transfer matrix elements again are: R16(s) = � s2

2⇢ and
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R26(s) =
s
⇢ over the final dipole magnet of a bend system, as shown in Fig. 11.
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Inserting these into Eq. (23) gives the approximate relative equivalent emittance growth due
to CSR for the final dipole in a bend system assuming a Gaussian temporal bunch profile
and steady-state conditions (ignores possible vacuum chamber shielding and any transient
e↵ects at the start of the bend).
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Here "N0 = �"0 is the initial normalized emittance, and d��/ds is taken from Eq. (79) with
s substituted for L and then di↵erentiated with respect to s.

For parameters of the LCLS BC2 compressor (set to its maximum strength) with E = 4.3
GeV, �0 = 20 m, ↵0 = �0.81, "N0 = 0.5 µm, L = 0.54 m, |✓0| = 50 mrad (⇢ = 10.8 m),
�z = 10 µm, and N = 1.6 ⇥ 109, the relative equivalent emittance increase is about 40%.
For a 3-4 dipole bunch compressor chicane this is an underestimate since it ignores the
radiation occurring at the end of the 2nd-to-last bend where the bunch length can be nearly
as short as in the last bend, and it also ignores the CSR interaction of the electron bunch in
the drift between the last two bends. These e↵ects are better suited to detailed computer
tracking, but the scaling is clear in Eq. (84). Finally, a comparison is shown in Fig. 12 as a
function of the rms bunch length in the final bend of the chicane. The plot includes particle
tracking done with the computer code Elegant [19] and is compared to the analytical results
of Eq. (84) all under the same parameters and assumptions (final bend only, steady-state
conditions, and a Gaussian temporal bunch profile).

3.11 Energy Modulator

Many FEL machine designs require a laser heater system to damp the micro-bunching in-
stability by adding a small intrinsic energy spread to the beam [20]. In such a system, the
electron bunch is energy-modulated at optical wavelengths by interacting the electron beam
with an optical laser in a short undulator enclosed is a small magnetic chicane. The chicane
introduces a transverse o↵set to the undulator axis (see ⌘ in Fig. 13) allowing more conve-
nient injection of the laser into the undulator in order to interact with the electron bunch.
The interaction generates an additional energy spread on the electron beam inside the chi-
cane which can also dilute the bend-plane emittance if the system optics are not designed
well, much like ISR or CSR.

The energy modulation accumulates over the undulator, as intended, but the o↵-energy
electrons will be bent di↵erently by the last two dipoles of the chicane. Once again we
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Figure 12: The CSR-induced equivalent relative emittance growth from Eq. (84) (solid-
blue) and the same from computer tracking in Elegant [19] (red-circles) with steady-state
conditions, including the final bend only, and using a Gaussian temporal profile, as assumed
in the derivation of Eq. (84).

Figure 13: Laser heater arrangement with optical laser interacting in a short undulator
enclosed in a 4-bend chicane. The bend-plane o↵set, ⌘, is provided by the chicane and
allows easier laser injection as shown.
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need the transfer matrix element, R16 = ⌘, which maps a small relative energy deviation, �,
generated within the undulator, to a position change at the end of the chicane, �x = R16�.
The symmetry of the chicane, as shown in Fig. 13, results in R26 = 0, so the second moment
of the kicked particle positions in the bend-plane immediately after the chicane is

h�x2i = R2
16�

2
� = ⌘2�2

� , (85)

where ⌘ is the bend-plane chicane o↵set shown in Fig. 13 and �� is the rms relative energy
spread (rms modulation) added by the laser interaction.

Substituting h�x2i into Eq. (22), and with h�x02i = 0 and h�x�x0i = 0 (i.e., R26 = 0),
then describes the equivalent bend-plane emittance growth for a laser heater in a chicane.
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Here the Twiss parameters �0 and ↵0 are evaluated at the exit of the chicane, and ↵0 appears
since this is the equivalent emittance growth, which includes the induced matching error.

Using the LCLS laser heater parameters [20], and at the full (extreme) IR-laser pulse
energy of 250 µJ, the rms relative (modulated) energy spread generated at 135 MeV is
�� ⇡ 9 ⇥ 10�4. With the chicane’s bend-plane o↵set at ⌘ = 35 mm, and Twiss parameters
at the end of the last dipole of �0 = 11 m and ↵0 = 0.48, the relative equivalent emittance
growth is small at 2.9% for an initial bend-plane emittance of "N0 = 0.5 µm. With the laser
pulse energy set to its nominal value of 45 µJ (�� < 3.3 ⇥ 10�4) the calculated emittance
growth in Eq. (86) is < 0.4%. Figure 14 (taken from Ref. [20]) shows actual time-sliced
emittance measurements at LCLS immediately after the laser heater system. The emittance
results are almost unchanged by increasing the laser pulse energy from 45 to 250 µJ, which
corresponds to an rms relative energy spread range of 3.3 ⇥ 10�4 to 9 ⇥ 10�4. (Note that
the generated energy spread scales with the square root of the laser pulse energy.) These
emittance measurements are consistent with Eq. (86), which predicts an emittance increase
of 0.4% to 2.9% over this range, but these small levels are not resolved in Fig. 14. (Note
that the emittance measurements with the laser heater switched o↵ are believed to be under-
estimated due to coherent radiation generated as the bunch pases through the beam screen
which is used to measure the emittance. With the heater turned on, this coherent radiation
is suppressed by the larger energy spread and the emittance measurements become more
accurate.) It is important to note the value of �0 here. A much smaller choice can inflate
the emittance growth.

3.12 Transverse Wakefields

The electron bunch will interact with a misaligned RF accelerating structure generating a
short-range transverse wakefield, where the field established by the leading particles in the
bunch at z0 (coordinate along the bunch length) kicks the trailing particles at z (negative
z toward the bunch head). The transverse kicks, for any particular value of z, are summed
over the leading particles and expressed by the convolution integral [22]

�x0(z) = �Ne2L

E

Z z

�1
x(z0)f(z0)Wx (z � z0) dz0, (87)
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Figure 14: Measured bend-plane time-sliced emittance after the LCLS laser heater and for
various settings of the laser pulse energy. The measured emittance growth is insignificant
and consistent with Eq. (86). The curve taken with laser heater o↵ is presumed to be an
underestimate due to the e↵ects of coherent radiation from the screen (see text).

where f(z0) is the temporal bunch distribution normalized to unity, N is the bunch popula-
tion, L is the structure length, E is the electron energy, x(z0) is the transverse o↵set of the
field-generating bunch slice, and Wx is the transverse point-charge dipole wakefield of the RF
structure, typically calculated for a precise structure geometry by using an electro-magnetic
computer code. The point-charge wake is usually expressed in volts per meter of structure
length, per pC of bunch charge, and per millimeter of transverse o↵set.

The dipole point-charge wake function can be approximated by [22]

Wx (z) ⇡
4Z0cs1
⇡a4

h
1� (1 +

p
z/s1)e

�
p

z/s1
i
, (88)

where a is the mean iris radius over the RF structure, Z0 is the free-space impedance, and s1
is the characteristic length of the wake function related to the specific RF structure geometry
(s1 ⇡ 0.4 mm for the NLC X-band structure applied here).

For simplicity, and to allow a closed form solution which indicates the emittance scaling,
we will approximate Eq. (88) as a linear function in z (see Fig. 15), and also use a uniform
temporal bunch distribution with full length �z (bunch head at z = ��z/2 and bunch tail
at z = �z/2).
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⇡a4g

✓
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2

◆
(89)

Here we introduce an approximate scaling factor g ⇡ 2.5 in order to best fit the point-charge
wake function over the 2.5-mm span of Fig. 15 to a line. This is quite rough but allows an
estimate and shows the parameter scaling. More detailed wakefield calculations are better
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left to computer codes and particle tracking. Note for g = 1 (dotted steepest line of Fig. 15)
the linear slope of Eq. (89) is the asymptotic slope for all transverse wakefields evaluated at
z � z0 = 0 and in steady-state conditions.

To estimate the wakefield e↵ect on the electron bunch we take a short accelerating struc-
ture (L ⌧ �0) with a transverse misalignment x0 (constant along z and over L), and in this
simplified case Eq. (87) becomes
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which shows, for this approximation, that the kicks are a linear function of z along the bunch
length, with the bunch head (z = ��z/2) not kicked, and the bunch tail (z = �z/2) kicked
maximum. With this choice of coordinates the mean of z is zero (hzi = 0), but we have a
non-zero mean value of the kicks (h�x0i 6= 0). Therefore we need to use Eq. (53), rather
than Eq. (28), and we find the approximate equivalent emittance growth for a short RF
structure with length L, iris radius a, and transverse misalignment x0 is
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where �z = �z/
p
12 is the rms bunch length and g ⇡ 2.5 is a rough scaling factor used to

approximate this particular point-charge wake as a line (with g = 1 as the worst case).
The mean iris radius typical for the X-band RF structure installed at LCLS is a = 4.7

mm, the structure length is L = 0.6 m, the initial emittance is "N0 = 0.6 µm, the beta
function in the structure is �0 = 11 m, the fit parameter is g ⇡ 2.5, the electron energy is
E = 260 MeV, the rms bunch length is �z = 0.6 mm, the bunch population is N = 1.56⇥109,
and the transverse misalignment is x0 = 0.17 mm. From these numbers we use Eq. (91) to
estimate an equivalent emittance growth of 6%, which is very close to the measured value of
7% shown in Fig. 16, and also shows the quadratic scaling with x0. It is worth noting that
the equivalent emittance growth scales with the 8th power of the iris radius, a.

3.13 Transverse RF Deflector

Transverse RF deflectors can be used to separate electron bunches and distribute them to
various destinations, such as applied at Je↵erson Lab [23] and envisioned in the NGLS design
[24]. Each bunch may be kicked left or right using one of the two RF crest phases (+90 or
�90 deg), and the zero-crossing phase can also be used as a third direction (undeflected).
However, in order not to significantly tilt the electron bunch from head to tail at the zero
crossing-phase, the RF wavelength must be very long with respect to the bunch length. It is
therefore useful to express the equivalent emittance growth for a bunch at the zero-crossing
phase of an RF deflector in order to choose the upper limit of the RF frequency.

The kick angle of an electron at longitudinal position, z, along the bunch, from an RF
deflector at a zero-crossing phase, but with a peak voltage, V0, and wavelength, �RF , is
given by �x0 = eV0

E sin(2⇡z/�RF ), which for a bunch length much shorter than the reduced
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Figure 15: Point-charge dipole wake function for x-band RF structure with iris, a ⇡ 4.7 mm,
and wake constant s1 ⇡ 0.4 mm. The dashed red curve is a numerical calculation (most
accurate here) while the dash-dot blue curve is Eq. (88), which approximates this wake over
a 2.5-mm range (enough for our 0.6-mm rms bunch length). The solid green line is our linear
approximation (g = 2.5), and the dotted magenta line is the slope evaluated at z � z0 = 0
(by setting g = 1 in Eq. (89)). The wake is shown in volts per pC of bunch charge, per
meter of structure length, and per millimeter of transverse o↵set.
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Figure 16: Measured normalized emittance after a 60-cm long X-band RF accelerating sec-
tion at 260 MeV as the horizontal beam position, x, in the cavity is varied. The emittance
is minimized at x0 = 0.17 mm with a 7% increase at x0 = 0.

RF wavelength (�z ⌧ �RF
2⇡ ) becomes �x0 ⇡ 2⇡ eV0

E z/�RF . Using Eq. (28) to calculate the
equivalent emittance growth due to the RF deflector gives

�"̄

"0
⇡ 2⇡2�0

"0

e2V 2
0

E2

�2
z

�2
RF

. (92)

As an example we take the NGLS beam spreader system which is based on transverse RF
deflectors at 325 MHz (�RF = 0.92 m), with V0 = 3 MV, E = 2.4 GeV, �0 = 15 m,
�"0 = 0.6 µm, and �z = 50 µm. The equivalent emittance growth is 1%, which suggests
choosing an RF frequency no higher than this 325-MHz level.

3.14 Tilted RF Accelerating Cavity

RF cavities are used to accelerate the electron beam to high energy, allowing e�cient, short-
wavelength FEL operation. A transversely misaligned cavity (or rigid group of cavities) can
introduce a transverse wakefield, as discussed above. In addition, a tilted cavity (with pitch
or yaw angle error) which is not operating at its crest phase, can kick the electron bunch
di↵erentially from head to tail, introducing a transversely tilted bunch (as an RF deflector)
and therefore generates a projected emittance growth. It is therefore useful to estimate the
equivalent emittance growth induced by a tilted RF accelerating cavity.

The kick angle of an electron at longitudinal position, z, along the bunch, from an RF
accelerator with energy gain, eV0, and wavelength, �RF , is given by x0 = eV0

E cos(2⇡z/�RF +
�) sin ✓, where ✓ is the tilt-angle error of the cavity (a ‘pitch’ error in the vertical or ‘yaw’
error in the horizontal), and � is the RF phase (with crest at � = 0). Note that we take the
case where the energy gain over the RF cavity is small compared to the electron energy (with
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E taken as the average energy over the cavity). For a small tilt error (|✓| ⌧ 1), and an rms
bunch length much shorter than the reduced RF wavelength (�z ⌧ �RF

2⇡ ), the kick becomes
x0 ⇡ eV0

E ✓(cos� � 2⇡ z
�RF

sin�). Here we are only interested in the di↵erential kick across
the bunch length (the z-dependent kick) so we ignore the first term as a static kick, easily
removed by adjusting steering coils, and write the di↵erential kick as �x0 ⇡ 2⇡ eV0

E ✓ z
�RF

sin�,
ignoring the sign. Again using Eq. (28) to calculate the equivalent emittance growth due to
the tilted RF cavity gives

�"̄

"0
⇡ 2⇡2�0

"0

e2V 2
0

E2

�2
z

�2
RF

✓2 sin2 �, (93)

which shows that the emittance growth is minimized with a short bunch, �z, a high energy,
E, or an RF phase at crest, � = 0 (in this linear approximation). Note that we have ignored
wakefields of the tilted cavity (addressed earlier) and assumed no significant cavity focusing.

As an example we take one 8-cavity, 1.3-GHz cryomodule at NGLS (�RF = 0.23 m),
operating at an RF phase (�) which is 25-deg o↵ crest, with an 8-cavity total energy gain
of eV0 = 120 MeV, a mean beam energy of E = 0.7 GeV, �0 = 50 m, �"0 = 0.6 µm, and
�z = 400 µm (before final compression). The equivalent emittance growth for a 0.5-mrad
tilted cryomodule is 1%.

4 Example Tolerance Estimates

The following section applies a few of these emittance dilution formulas in order to estimate
single component tolerances over the entire LCLS accelerator, including quadrupole magnet
alignment, quadrupole and sextupole field component errors in dipole magnets, and roll
angle tolerances of quadrupole magnets, etc. These tolerances are estimated based on a
2% emittance increase for each component, and using the 1-nC (2006) LCLS accelerator
configuration (whereas the bunch charge is typically 150-250 pC since 2009, which further
loosens these tolerances). Figures 17 and 18 show the optics functions along the accelerator,
while Figures 19 through 21 show single component tolerances on a log scale for various
errors as described in the captions.

5 Tabular Summary of Emittance Growth Formulas

The following table (2), for convenience, lists all of the emittance results derived above.
Only the emittance growth in the dispersive-plane (horizontal) is shown here. When the
error a↵ects both planes (e.g., a rolled quadrupole magnet) a second reference (to the other
transverse plane) is included in the Eq. numbers at right.

6 Summary

Various transverse emittance dilution mechanisms are evaluated here with the ‘equivalent’
emittance definition introduced in order to simplify the formulation and include the induced
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Figure 17: Beta functions (top) and dispersion (bottom) over the LCLS, up to the start
of the undulator at 13.6 GeV. The horizontal beta function (top) is in solid-blue, while
the vertical beta (top) is in dashed-red. Similarly the horizontal dispersion (bottom) is in
solid-green, while the vertical dispersion (bottom) is in dashed-magenta.

Figure 18: RMS bunch length (top) and rms relative energy spread (bottom) over the LCLS,
up to the start of the undulator. The final rms relative energy spread is dominated by beam
tails here. The core rms value is actually 0.01%. The final rms bunch length is 25 µm.
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Figure 19: Quadrupole and sextupole field component tolerances for all dipole magnets
(top) and dipole magnet roll angle tolerances (bottom) over the LCLS, up to the start of the
undulator. Blue diamonds (top) are quadrupole field component tolerances, |B1/B0|, while
red circles (top) are sextupole field component tolerances, |B2/B0|, for each dipole magnet
and evaluated at a reference radius of r0 = 10 mm. The tightest tolerances are the center
BC2 dipoles with a gradient tolerance of |B1/B0| < 5⇥ 10�5 at a radius of r0 = 10 mm.

matching error. Reasonably simple formulas are provided which relate accelerator compo-
nent errors to beam brightness degradation, and can be used in tolerance estimations and
for machine design considerations. These formulas are only approximate in most cases, but
reflect the parameter scaling and allow quick estimates for single component errors. More
detailed studies of multiple errors over a large machine are better suited to particle track-
ing in computer codes, some of which are used here for comparison and to validate these
approximate formulas.
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Figure 20: Transverse alignment tolerances (top) and roll angle tolerances (bottom) for all
quadrupole magnets along the LCLS, up to the start of the undulator. Blue diamonds (top)
are horizontal alignment tolerances, |�xtol|, while red circles (top) are vertical alignment
tolerances, |�ytol|. The tightest alignment tolerances are two quadrupole magnets near the
BC2 chicane, at s ⇡ 400 m, with alignment requirements at the 150 µm level, while the
quadrupole magnet roll angle tolerances do not drop below 2 mrad.
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Figure 21: Sextupole field component tolerances in the quadrupole magnets (top) and relative
field gradient tolerances for all quadrupole magnets (bottom) along the LCLS, up to the start
of the undulator. Sextupole component tolerances are quite loose with |B2/B1| > 4% at r0
= 10 mm, and quadrupole field gradient tolerances are typically above 1%, and do not drop
below about 0.2%.
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Table 1: Most of the symbol definitions used throughout this note.
Parameter symbol unit

Initial rms emittance (hor. or ver.) "0 m
Normalized rms emittance (hor. or ver.) "N0 m
Final rms emittance (hor. or ver.) " m
Final rms equivalent emittance (hor. or ver.) "̄ m
Electron energy E eV
Electron momentum p eV/c
Bunch population N
Electron’s initial horizontal position x m
Electron’s initial horizontal angle x0 rad
Electron’s initial vertical position y m
Electron’s initial vertical angle y0 rad
Electron’s longitudinal position z m
Electron’s relative energy deviation �
Twiss beta function (hor. or ver.) � m
Twiss alpha function (hor. or ver.) ↵
Twiss gamma func. or Lorentz factor � 1 or 1/m
Hor. dispersion function (no ver.) ⌘ m
RMS bunch length �z m
RMS relative energy spread ��

Amplitude of beta-mismatch (� 1) ⇣ see Eq. (9)
Dispersion to hor. beam size ratio ⇠ see Eq. (37)
Ver. to hor. beam size ratio � see Eq. (47)
Dipole magnet bend angle or cavity tilt ✓ rad
Magnet or RF structure length L m
Bend radius of dipole magnet ⇢ m
Magnet roll angle error or RF phase � rad
Quadrupole magnet focal length f0 m
Quadrupole magnet field gradient G T/m
Sextupole magnet strength K2 m�3

Reference radius (field probe radius) r0 m
Radiation length of a foil L0 m
Iris radius of RF accelerating structure a m
Peak RF voltage V0 V
Wavelength of RF voltage �RF m
Speed of light c m/s
Free-space impedance Z0 Ohms
Classical electron radius re m
Planck’s constant divided by 2⇡ h̄ eV-s
Electron charge e C
Electron rest mass mc2 eV
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Table 2: Summary list of emittance growth mechanisms, formulas, and Eq. numbers in the
text. Only the emittance growth in the dispersive-plane (horizontal) is shown here. When
the error a↵ects both planes (e.g., a rolled quadrupole magnet) a second reference (to the
other transverse plane) is included in the Eq. numbers at right.

Mechanism �"̄/"0 ⇡ Eq.

Angular Dispersion, ✓0
1
2
�0

"0
✓20�

2
� 29

Dipole Roll Error, � 1
2
�0

"0
�2✓20�

2
� see 29

Spatial and Ang. Dispersion 1
2�0"0

[�⌘2 + (↵0�⌘ + �0�⌘0)2]�2
� 31

Second-Order Dispersion 2
5

1
�0"0

[�⌘22 + (↵0�⌘2 + �0�⌘02)
2]�4

� 33

Third-Order Dispersion 27
14

1
�0"0

[�⌘23 + (↵0�⌘3 + �0�⌘03)
2]�6

� 34

Quadrupole Gradient Error 1
2

⇣
�G
G0

⌘2
�2
x0

f2
0
(1 + ⇠2) 35,36,37

Quad. Transverse O↵set, x0
1
2
�x0

"x0

⇣
x0
f0

⌘2

�2
� 38

Quad. Roll Angle, � 1
2 sin

2(2�)�x0�y0

f2
0

⇣
"y0
"x0

⌘
39,40

Sextupole Trans. O↵sets, x0, y0
1
2K

2
2L

2�2
x0 [x

2
0(1 + ⇠2) + y20�

2] 45,46,37,47

Skew Quadrupole Coupling 1
2

⇣
"y0
"x0

⌘
�x0�y0

f2
0

48,49

Quad. Field Error in Dipole 1
2✓

2
0

⇣
B1
B0

⌘2
�2
x0

r20
(1 + ⇠2) 51,52,37

Sext. Field Error in Dipole ✓20

⇣
B2
B0

⌘2
�3
x0"x0
r40

h
(1 + ⇠2)2 + �4

i
57,58,37,47

Chromaticity of Quad. 1
2
�2
x0

f2
0
(1 + 2⇠2) �2

� 60,61,37

Sextupole Aberration 1
4K

2
2L

2�3
x0"x0

h
(1 + ⇠2)2 + �4

i
62,63,37

Coulomb Scattering 1
2
�0

"0

E2
0

E2
L
L0

⇣
1 + 1

9 log10

⇣
L
L0

⌘⌘2

65

ISR in 4-Dipole Chicane 55
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p
3

reh̄c
(mc2)7

E6|✓50 |
"N0L

2
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4�0 + 4↵0LT + �0

⇤2

10

⌘
78,77

CSR in Last Chicane Dipole 0.024 r2eN
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"N0

mc2

E
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L|✓50 |
�4
z

⌘2/3 ⇣
�0
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⌘
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Energy Modulation in Chicane 1
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"0�0
�2
� 86

Transverse RF Wakefields 2�0
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z 91

Transverse RF Deflector 2⇡2 �0
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Tilted RF Acc. Cavity 2⇡2 �0
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