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The soft x-ray self seeding system (SXRSS-II) at the LCLS-II (linac coherent light source) is
studied for both monochromatic and two-color self seeding operations. We briefly review the relevant
diffraction grating theory, including the associated linear matrix transport formalism for finite pulses,
and then analyze the design and performances characteristics of a two-color grating.



3

Grating
(toroidal, VLS)

M1 (rotating 
planar mirror)

M2
(toroidal mirror)Slit

M3
(planar mirror)

e-beam

X-rays

Source point
z = 0 m

(z = 3 m)

z = 4.3 m

z = 4.5 m

Image point
z = 6.5 m

FIG. 1: LCLS-II soft x-ray self-seeding system layout (not to scale). The electron beam is propagated through the chicane
magnets while the photon beam is sent onto the grating and through the imaging system. The first diffraction order (m = 1)
is apertured at the slit, propagated and refocused onto the electron beam downstream [2].

I. INTRODUCTION

Soft X-ray self-seeding (SXRSS) has been successfully built [1–3] and commissioned at the LCLS [4] free electron
laser (FEL). It is currently planned for re-commissioning with the new LCLS-II variable gap undulators. In the
present configuration (Fig. 1), the SXRSS system consists of a grazing incidence toroidal diffraction grating with
varied line spacing (VLS), a rotating mirror (M1), a collimation slit, a focusing spherical mirror (M2), and a plane
mirror (M3). This setup enhances the SXR beam coherence properties and is a core x-ray science capability for high
resolution studies. It is also a topic of active FEL study [5–8].

Here we examine a few aspects of SXRSS as they apply to LCLS-II. First, in Sec. II, we review the standard grating
theory, which is used to numerically model x-ray transport through the SXRSS system. While the baseline optical
design is essentially unchanged from the LCLS design, the new variable gap LCLS-II SXR undulators provide a new
flexibility in the range of electron beam energies can produce the same SXR photon energy. As such, the effective
SASE source point and size in the undulators upstream of the SXRSS (positioned at the U10 position) can vary,
which impacts the downstream spectral imaging for seeding in the downstream undulator (U11). We outline two
basic approaches to modeling the system; the light path function, which yields the different expansion orders of the
Fresnel integral transport equations, and the matrix formalism of Kostenbauder [9] which provides a straightforward
way to model Gaussian pulses through the linear optics. The matrix formalism is an approximation of the Fresnel
approach (which applies to all orders and for arbitrary beam distributions), but is still useful.

Second, in Sec. VI, we examine a two-color grating design that interleaves rulings of different density across the
SXRSS grating. This grating has the same VLS parameters and toroidal substrate as the existing single color grating
except it is ruled to send two colors within the SASE bandwidth into the same forward angle. This produces two-
color seeded FEL pulses with fixed 0.1% relative color separations and a temporal intensity modulation. Dual- and
multi-color gratings are well-known in laser optics (e.g., [10, 11]), but have not yet been applied for SXR self-seeding
schemes in XFELs. At hard x-rays, multicolor seeding has been achieved by exploiting overlapping crystal reflections
[12]. At soft x-rays, multi-color self-seeding combined with a recently proposed enhanced self-seeding approach [13]
could lead to a stable multi-color SXR source, opening new possibilities in time-dependent polarization control [14]
or new science applications (e.g., [15–17]).

II. TOROIDAL VLS GRATING THEORY

An illustration of the coordinate system for the grating is shown in Fig. 2. The incident field is emitted from the
object point A (the source position in the upstream undulator), diffracted from point P at the location r0 = (x0, y0, z0)
on the grating surface, and focused to the point B (slit). The typical approach for analyzing the spectral and focusing
properties of the grating is through the light path function, which boils down to minimizing the accumulated phase
differences over the different paths. The light path function is [18]

F = AP + PB + nmλ (1)
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FIG. 2: Left: Picture of the SXRSS grating from [1]. Right: Schematic diagram of the toroidal grating coordinate system with
the source point at A, and the image point at B.

where n is the groove number at the point P , m is the diffraction order, and λ is the wavelength. The image is
obtained when the conditions

∂F

∂x0
= 0,

∂F

∂y0
= 0 (2)

are satisfied. We define the incident angle θi = π/2−α and diffraction angle θd = π/2 +β with respect to the grating
substrate surface such that

x1 = r1 sinα = r1 cos θi

x2 = r2 sinβ = −r2 cos θd

z1 = r1 cosα = r1 sin θi

z2 = r2 cosβ = r2 sin θd. (3)

The path distances are given by

AP
2

= |r0 − r1|2 = (x0 − x1)2 + y2
0 + (z0 − z1)2 = r2

1 + x2
0 + y2

0 + z2
0 − 2r1x0 cos θi − 2r1z0 sin θi

PB
2

= |r2 − r0|2 = (x2 − x0)2 + y2
0 + (z2 − z0)2 = r2

2 + x2
0 + y2

0 + z2
0 + 2r2x0 cos θd − 2r2z0 sin θd

(4)

The ruled grating surface, measured by the largest extent of |r0| (which is 20× 4 mm for the SXRSS design in the
tangential and sagittal planes respectively) is much smaller than the distances to the source r1 and image r2. Thus
we can expand the light paths to different orders in the components of r0,

AP = r1 − x0 cos θi +
x2

0

2

(
sin2 θi
r1

− sin θi
R1

)
+
y2

0

2

(
1

r1
− sin θi

ρ

)
+ . . .

PB = r2 + x0 cos θd +
x2

0

2

(
sin2 θd
r2

− sin θd
R1

)
+
y2

0

2

(
1

r2
− sin θd

ρ

)
+ . . .

(5)

We have used the equation for a torus as depicted in FIG. 2, sitting in the x − z plane, with an outer edge just
touching the x− y plane, (√

x2
0 + (z0 −R1)2 − (R1 − ρ)

)2

+ y2
0 = ρ2. (6)

where ρ is the radius of curvature in the poloidal direction (i.e., the sagittal/vertical focusing), and R1 is the radius
of curvature in the toroidal direction (tangential/horizontal focusing). Solving for z0 and about the origin (x0, y0) =
(0, 0), we can write z0 to lowest order in terms of x0 and y0,

z0 ≈
x2

0

2R1
+
y2

0

2ρ
. (7)
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FIG. 3: SXRSS system in the U10 position between undulators. Beam travels left to right. Measurements are in inches [mm].
The distance from the exit of U9 to the grating is 1883 mm, and from M3 to the entrance of U11 is 1876 mm.

The shape is parabolic near the origin.
A grating with varied line spacing (VLS) has a groove density of the form

dn

dx0
= N(x0) = N0 +N1x0 +N2x

2
0. (8)

where N1 introduces diffraction focusing and N2 corrects for aberration.
Combining Eqs. (5) and (8) the light path function can then be written to different orders

F = r1 + r2 + C1,0x0 + C2,0x
2
0 + C0,2y

2
0 + C1,2x0y

2
0 + C3,0x

3
0 + . . . (9)

with coefficients

C1,0 = mλN0 − cos θi + cos θd

C2,0 =
mλN1

2
+

sin θi
2

(
sin θi
r1
− 1

R1

)
+

sin θd
2

(
sin θd
r2
− 1

R1

)
C0,2 =

1

2

(
1

r1
− sin θi

ρ
+

1

r2
− sin θd

ρ

)
C1,2 =

cos θi
2r1

(
1

r1
− sin θi

ρ

)
− cos θd

2r2

(
1

r2
− sin θd

ρ

)
C3,0 =

mλN2

3
+

sin θi cos θi
2r1

(
sin θi
r1
− 1

R1

)
− sin θd cos θd

2r2

(
sin θd
r2
− 1

R1

)
.

(10)

The principal ray is given according to where each coefficient vanishes.

A. Tangential Plane

The first term C1,0 = 0 yields the grating equation for the principle ray wavelength λ0,

mλ0N0 = cos θi − cos θd. (11)

Moving forward we assume that m > 0. For grazing incidence and diffraction angles θi, θd � 1, then θ2
d ≈ θ2

i +2mλ0N0

and the diffraction angle is larger than the incidence angle. Further, in the case of the SXRSS grating where θ2
i �

2mλ0N0 the diffraction angle is weakly dependent on the incident angle and scales like
√
λ0,

θ2
d ≈ 2mλ0N0. (12)

This approximation will become useful for estimating the optimal VLS grating terms.
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TABLE I: SXRSS parameters for LCLS-II. Distances given are for the light path. Values for N1 and N2 in parentheses are
from the estimates presented in Eqs. (18) and (19). Note that the opposite sign of N1 is due simply to our choice of coordinate
system, and that the density increases along the direction of propagation.

Parameter Variable Value Unit

X-ray photon energy ~ω0 300–1200 eV

Wavelengths λ 4–1 nm

Magnification parameter µ 5.4–2.8 –

Source position r1 1.9–4.3 (+4.4 m w/U9 out) m

U9 exit to grating − 1.883 m

Grating to slit r2 1.35 m

Slit to M2 rs 0.18 m

Grating to M2 rm2 1.528 m

M2 to image point inside U11 r3 3 m

M3 to U11 entrance − 1.876 m

Grating incidence angle θi 18.2 (1.04) mrad (deg)

Grating diffraction angle θd 100–50 (5.73–2.86) mrad (deg)

Grating tang. rad. of curv R1 185 m

Grating tang. focal len. ftan 0.25–0.46 m

Grating sag. rad. of curv ρ 0.18 m

Grating sag. focal len. fsag 1.55–2.6 m

Groove density N0 1123 1/mm

Linear VLS N1 1.6 (-1.5) 1/mm2

Quadratic VLS N2 0.002 (0.0018) 1/mm3

M2 rad. of curv ρ2 23.2 m

M2 Incidence angle φ 15 (0.086) mrad (deg)

M2 tang. focus fLH 0.174 m

M2 sag. focus fLV ≥700 m

FIG. 4: Monochromatic X-ray pulse spot size evolution from source point through SXRSS system for 250 eV (left) and 1200
eV (right).

Setting C2,0 = 0 gives the tangential image location at the slit for the principal ray [1],

r2 =
r1 sin2 θd

r1
R1

(sin θd + sin θi)− sin2 θi −mλ0r1N1

. (13)

Inverting this expression we can identify both the tangential focal length ftan, and the effective rescaling of the source
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point

1

r2
=

1

µftan
− 1

µ2r1
(14)

where

µ =
sin θd
sin θi

> 1 (15)

is the tangential beam expansion parameter due to the different incidence and diffraction angles. The tangential focal
length is explicitly,

ftan =
sin θi sin θd

1
R1

(sin θi + sin θd)−mλ0N1

(16)

in agreement with Siegman in [19]. Note that in the Fourier propagation approach (Sec. V) the effective tangential
focal length is rescaled to µftan, as given in [3].

The linear density variation N1 is used to minimize the λ-dependent variation in the image position, which can be
significant and impacts the seed bandwidth. By inspection of Eq. (10), a straightforward approach (which also assists
in minimizing higher order aberrations) is to set the radius of tangential curvature close to

R1 ≈
r1

sin θi
. (17)

Obviously this is approximate because the source distance is not fixed across the tuning range. As an estimate,
however, we then set

N1 = − sin θd
mλ0

(
sin θd
r2
− sin θi

r1

)
≈ −2N0

r2
+

√
2N0

mλ0

θi
r1
. (18)

We have used (12) in the last step. For the SXRSS grating the last term is small, so the dependence on the wavelength
is weak. Using the parameters in Table II for r1 = 3.9 m we obtain R1 = 215 m and N1 = −1.5 mm−2, close to the
values of the existing SXRSS grating. Note that this value of N1 is the opposite sign of that defined in the SXRSS
PRD and associated literature due to the way we have defined the grating coordinate system with the source point
A in the x0 > 0 region, and the image point B in the x0 < 0 region. Both are consistent as in both cases, the groove
density increases in the direction of beam propagation (see FIG. 8).

The spherical aberration in the tangential plane vanishes if C3,0 = 0. Again using (17), we can then force C3,0 = 0
(at least for the principal ray) with

N2 =
3 sin θd cos θd

2mλ0r2

(
sin θd
r2
− 1

R1

)
= −3N1

cos θd
2r2

≈ 3
N0

r2
2

(19)

With the parameters in Table II we obtain N2 = 0.0018 mm−3. This is slightly less than the 0.002 value specified for
the SXRSS, but the system is fairly insensitive to this parameter.

B. Sagittal Plane

The image position r2 in the vertical plane is given by C0,2 = 0. This yields the typical expression for the sagittal
focal length fsag of a curved grating surface [19],

1

r1
+

1

r2
=

sin θi + sin θd
ρ

≡ 1

fsag
. (20)

The basic formalism can be straightforwardly extended to include the non-dispersive focusing optics such as M2
downstream.

C. Summary

The light path formalism provides a straightforward way to extract and optimize the optical transport via point-
to-point imaging. For beams with finite size and bandwidth one can use increasingly more sophisticated descriptions,
starting with the ABCD matrix formalism and its extension to finite pulse durations, and ending with a full Fresnel
propagation integral that can also include higher order aberrations and arbitrary paraxial wave input fields.
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FIG. 5: SXRSS imaging layout and associated transport matrices (not to scale).

III. ABCD FORMALISM

The ABCD matrix formalism is a simple way to investigate the linear aspects of the SXRSS transport for a
monochromatic beam with finite spatial extent without needing the full Fourier propagation approach. It yields
approximate values for the spot sizes of the image point downstream of the SXRSS system, including the corrections
for finite Rayleigh lengths zR = πw2

0/λ. An extension for non-monochromatic beams is summarized in Sec. IV. We
note that here we only consider idealized single mode beams with M2=1, whereas the actual incoming SASE pulses
may be multi-moded with M2 ≈ 3− 4. This generalization can also be explored with the ABCD formalism [20], but
we avoid it here in part for simplicity, but also because the beam is strongly dispersion-dominated after the grating,
which is what determines most of the salient features of the SXRSS system (such as resolving power).

The transverse envelope evolution from the x-ray source point to the seed image point is shown in Fig. 5. The

linear transport can be modeled as a transformation on a Gaussian beam exp
(
−ik x

2

2q

)
characterized by the complex

parameter

1

q
=

1

Rc
− i λ

πw2
(21)

where Rc is the source x-ray pulse radius of curvature and w is the spot size. Assuming a Gaussian guided mode in
the high gain regime, these can be approximated from 3D FEL theory as [21]

w = 2σx

(
L3D

2kσ2
x

)1/4

, Rc = −1.86L3D

(
L3D

2kσ2
x

)−1/2

(22)

where σx =
√
εnβ/γ is the rms transverse electron beam size, λ = 2π/k is the wavelength, and L3D is the 3D power

gain length. Given a total transport matrix

M =

(
A B

C D

)
, (23)

the characteristics of the monochromatic Gaussian output beam are given by

qf =
Aqi +B

Cqi +D
(24)

The final beam’s radius of curvature and spot size can be obtained straightforwardly from Rcf = 1/Re (1/qf ) and
w2
f = −λ/πIm (1/qf ) with the known elements of M and the initial beam complex-valued qi at the end of the upstream

undulator. Alternatively, and for simplicity of the analysis, one can calculate the position zs and waist size w0 of the
effective x-ray beam source point inside the undulator where qi = izR where zR = πw2

0/λ is the Rayleigh length with

w2
0 =

4R2
cw

2

4R2
c + k2w4

, zs = w2
0

k2w2

4Rc
. (25)
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TABLE II: Electron and X-ray beam parameters for LCLS-II. The SXRSS system is positioned in the U10 undulator slot.
Parameters in parentheses are for a SASE beam that has not reached full FEL gain-guiding (and may contain multiple
transverse modes), compared to an ideal guided beam.

Parameter Variable Value Unit

e-beam Energy γmc2 4 GeV

e-beam Current - 1.0 kA

e-beam ave. beta func β 18 m

e-beam norm emit. εn 0.35 mm mrad

e-beam ave. size σx 28 µm

undulator segment length - 3.4+1.0 drift m

effective gain length L3D 1.8–2.7 m

effective FEL parameter ρ3D 1.0–0.66 10−3

x-ray photon energy ~ω0 300–1200 eV

x-ray source waist size w0 47–37 (197–67) µm

x-ray source waist pos. inside und. zs -0.9– -2.4 (-3.5) m

x-ray spot size at grating – 100–50 (204–73) µm

The distance from the end of U9 to the grating surface at LCLS-II is 1.883 m, so the distance from the source point
to the grating in this approach is r1 = 1.883− zs = 1.9 to 4.3 m (zs is typically negative because Rc < 0).

The matrix for a drift length r1 is given by

MD(r1) =

(
1 r1

0 1

)
(26)

The x-ray beam then encounters the grating, which treats the horizontal and vertical planes differently. The matrices
are,

MGH
=

(
µ 0

−1/ftan 1/µ

)
, MGV

=

(
1 0

−1/fsag 1

)
. (27)

where µ = sin θd/ sin θi > 1 is the tangential beamwidth expansion parameter in Eq. (15). The beam then drifts a
length rm2 = r2 + rs = 1.528 m through the slit to the spherical focusing mirror M2. The M2 focusing is modeled
by the focusing matrices

MLH,V
=

(
1 0

−1/fLH,V
1

)
(28)

where fLH
= (ρ2 sinφ)/2 and fLV

= ρ2/(2 sinφ) with radius of curvature ρ2 at an incidence angle φ (See Table II).
In the present design, the vertical focusing effect from M2 is negligible so we can take the fLV

→ ∞ limit. M2 is
followed by a drift r3 into the seed undulator. The associated waist position varies somewhat with wavelength due to
the dependence of ftan and fsag in (16) and (20) on the diffracted angle. The total transport matrices are

MH = MD(r3)MLH
MD(rm2)MGH

MD(r1)

MV = MD(r3)MLV
MD(rm2)MGV

MD(r1)
(29)

It can be shown that for a source beam at a waist (qi = izR), the location of the final waist position is given by the
solution to ACz2

R +BD = 0 of the total transport matrix. Assuming that the Rayleigh length of the initial beam is
large compared to the individual drift and focal lengths in the system, the waist position in the horizontal plane is
given approximately by

r3,H ≈
fLH

(rm2 − µftan)

(rm2 − µftan)− fLH

(30)

where, by design, rm2 − µftan ≈ rs is approximately the distance from the slit to M2. Thus the slit is being imaged
horizontally by M2 toward the U11 undulator entrance. The waist position in the vertical dimension has the exact
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form

r3,V = fsag − rm2 +
f2
sag(r1 − fsag)

(r1 − fsag)2 + z2
R

(31)

where in the present design with weak vertical M2 focusing the slit is not being imaged vertically. From these
expressions one can define the horizontal magnification µH = −r3,H/(rm2 − µftan) of the slit plane,

µH =
fLH

fLH
+ µftan − rm2

. (32)

The vertical magnification is one since the slit is not imaged vertically.
Assuming an initially round beam with a Rayleigh length long compared to the drift lengths, the spot sizes at the

waists downstream of the SXRSS system for a monochromatic input beam are given by

w2
x = w2

0

A2z2
R +B2

z2
R

≈
(
w0ftanµH

zR

)2

, w2
y ≈

(
w0fsag
zR

)2

. (33)

The spot size evolution through the SXRSS system for a monochromatic beam is shown in Fig (4), where one can
identify the waist sizes and locations just upstream of the U11 undulator entrance.

IV. ABCD EXTENSION FOR FINITE PULSE DURATIONS

The linear ABCD transport formalism can be extended to pulses of finite temporal duration to assess the spectral
properties of the transport, including the resolving power of the SXRSS system. Kostenbauder [9] describes an elegant
generalized description for Gaussian pulses that starts with the expanded transformation matrix M ,

x

θ

t

f0


out

=


A B 0 E

C D 0 F

G H 1 I

0 0 0 1



x

θ

t

f0


in

= M


x

θ

t

f0


in

. (34)

The spatial variables (x, θ) here refer to the transverse coordinates of the optical beam in the plane orthogonal to
the direction of propagation, as distinct from the coordinate system defined by the grating in Fig (2). The matrix
element E = ∂xout/∂fin is the spatial chirp, F = ∂θout/∂fin is the angular dispersion, G = ∂tout/∂xin is the pulse
front tilt, H = ∂tout/∂θin is the time/angle correlation, and I = ∂tout/∂fin is the group delay dispersion, GDD. A
general extension to the vertical dimension is given in [22].

Following Kostenbauer, the elements of M can be used to calculate the transformation of a beam with Gaussian
spatial and temporal distributions through the linear system. Consider a general bi-Gaussian pulse of the form

E(x, t) ∝ exp

−ik0

2

(
x

−t

)T
Q−1

(
x

t

) = exp

[
i

k0

2 Det(Q)

(
Qxxt

2 + 2Qxttx−Qttx2
)]

(35)

where Q21 = Qtx = −Qxt. This is an extension of the previous Gaussian beam description that uses the complex
parameter q. Here, however Q is a matrix that includes the temporal features as well as the spatial-temporal cross
terms Qxt when the dispersion is non-zero. For example, consider an uncorrelated input beam at a waist E0(x, t) =
exp

[
−x2/w2

0 − t2/4σ2
t

]
. From (35) the input matrix Qi is simply

Qi =

(
izR 0

0 −2ik0σ
2
t

)
. (36)

Whatever the form of the input Qi, the output matrix is related to the input matrix via the transport elements of M ,

Qf =

[(
A 0

G 1

)
Qi +

(
B E/λ0

H I/λ0

)]
[(

C 0

0 0

)
Qi +

(
D F/λ0

0 1

)] . (37)
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FIG. 6: Temporal (left) and spectral (right) pulse amplitudes on-axis at the U11 entrance of a σω/ω0 = 0.1% rms bandwidth
Gaussian input pulse at 1240 eV, assuming an ideal, guided input from U9.

Division is multiplication by the inverse. Note the similarity with Eq. (24). Thus for a given Qi and transport
matrix M , one can calculate the output field in (35) with (37). The moments of the intensity distribution can also
be calculated. For instance, from Eq. (35) the rms pulse duration and transverse size are given by

〈t2〉 = − Im[Det(Q)Q∗tt]

2k0 Det(Im[Q])
, 〈x2〉 =

Im[Det(Q)Q∗xx]

2k0 Det(Im[Q])
. (38)

With the field in (35) we can obtain several properties about the beam that are completely general for any char-

acteristic matrix Q. In the spectral domain Ẽ(x,∆ω) =
∫
E(x, t)e−i∆ωtdt the field near the principle frequency

is

Ẽ(x,∆ω) ∝ exp

[
− i

2k0Qxx

(
Det(Q)∆ω2 − 2k0Qxtx∆ω + k2

0x
2
)]
. (39)

At the x = 0 centerline (e.g., a slit or the narrow electron beam in the SXRSS) the relative rms spectral bandwidth
is

σ2
k,x=0

k2
0

=
1

2k0c2 Im
[
−Det(Q)

Qxx

] . (40)

This will be useful for calculating the approximate resolving power of the SXRSS system. If Re
[

Det(Q)
Qxx

]
6= 0, then

the pulse has quadratic phase components in both the frequency and time domains, and they are of opposite sign.
An example from simulations of the SXRSS system at 1240 eV is shown in Fig. 6. This means that the on-axis seed
pulse is frequency-chirped, with the instantaneous frequency given by the derivative of the temporal phase,

ω(t) = ω0 + Re

[
Qxx

Det(Q)

]
k0t = ω0 (1 + χt) . (41)

where χ = Re
[

Qxx

cDet(Q)

]
is the chirp. As such, the seed pulse duration is longer than the transform-limited duration

σt by the factor 1/
√
k0Im[Qxx/Det(Q)].

A. SXRSS System

We now return to the specific case of the SXRSS system. The drift and grating matrices are, respectively [9, 19]

MD(z) =


1 z 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , MGH
=


µ 0 0 0

− 1
ftan

1
µ 0 − λ2

0N0

cµ sin(θi)

− λ0N0

c sin(θi)
0 1 0

0 0 0 1

 . (42)
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FIG. 7: On-axis relative bandwidth (left) and frequency chirp (right) for σω/ω0 = 0.1% rms bandwidth Gaussian input pulse
at 1240 eV. Both vary considerably within the SXRSS system and then settle to stable values downstream in U11.

The signs of the matrix elements are chosen to be consistent with the present notation. Optical elements with pure
focusing and no dispersion (e.g., M2 mirror or sagittal grating plane) use the same form of MGH

with N0 = 0 and
µ = 1. The total linear transport matrix in (29) from the source to the image point inside the undulator gives a Qf
in the horizontal plane of

Qf,H =
1

ν

(
(ftan − q1µ)f2

LH
+ (r3 − fLH

)ν
ftanfLH

N0q1λ0µ

c sin θi

− ftanfLH
N0q1λ0µ

c sin θi
− 2ftanN

2
0 (fLH

−rm2)q1λ
2
0

2c2 sin2 θi
− ikν

2c2σ2
k

)
(43)

where q1 = r1 + izR and ν = ftan
(
fLH
− q1µ

2 − rm2

)
+ µ(rm2 − fLH

)q1. In the vertical plane things are simpler,

Qf,V =

(
r3 + rm2 +

fsagq1
fsag−q1 0

0 − ik
2c2σ2

k

)
. (44)

Using Eq. (40) the bandwidth of the on-axis seed field can be calculated. One may be tempted to calculate the
bandwidth through at the slit which, assuming that the tangential focusing is f = µr1r2

µ2r1+r2
from Eqs. (14) and (16),

yields

σ2
k,slit

k2
0

=
σ2
k/k

2
0

1 +
(

4πN0σkr1
k20w0 sin θi

)2 ≈
(
k0w0 sin θi

4πN0r1

)2

.

Here σk = 1/2σtc is the bandwidth of the initial pulse which is assumed large enough that the beam is dispersion-
dominated at the slit. However, it is the subsequent imaging of the slit by the M2 mirror into the downstream
undulator that sets the ultimate seed bandwidth. This calculation uses Qf,H above and is a bit more involved, giving

σ2
k,x=0

k2
0

≈
(

sin θi
2πN0w0

)2 [
1 + ∆fH

2r1

ftan
+

(∆fH)2

f2
tan

(
r2
1 + z2

R

f2
tan

+
2r1

µftan

)]
(45)

where ∆fH = fLH
− (rm2 − µftan) and is small compared to the parameters it relates. By inspection of the image

point position in (30), ∆fH is essentially the deviation from a point-to-parallel imaging of the slit into U11, for which
∆fH = 0. In the current design with ∆fH > 0 the monochromatic seed comes to a waist downstream of the SXRSS
system, and then diverges downstream, as shown in Fig. 4. Thus the on-axis seed bandwidth also changes as the
dispersed light propagates downstream. This is shown in Fig. 7, where the on-axis bandwidth evolves dynamically
through the SXRSS transport before asymptotically settling approximately to the value given in Eq. (45). The chirp
also varies in a related way, which is also shown.

The resolving power of the SXRSS system, given by the FWHM of the spectrum, is therefore

R =
1

2.35σk,x=0/k0
≈ πN0w0

1.18 sin θi
(46)

For ∆fH = 0 taken on the right, this is close to the value given in Ref. [23].
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V. FRESNEL PROPAGATION

With Fresnel propagation integrals, one can model the evolution of an arbitrary paraxial field input through optical
components that include higher order aberrations. Propagation through the system is calculated by applying the
proper phase or amplitude transformation at each optical element and using Fresnel propagation integrals through
the drifts and apertures. The procedure for the SXRSS system is outlined in Ref. [3], so we only quickly summarize
it here.

To propagate over a drift of length z, the field at each frequency k is calculated according to the integral

E(r⊥, z) =
ik

2πz
e−ikz

∫
E(r′⊥, 0) exp

[
−i k

2z
|r⊥ − r′⊥|

2
]
d2r′⊥. (47)

where r⊥ is the transverse coordinate vector orthogonal to the direction of propagation. The effect of an optical
element is modeled as a phase deformation,

E′(r⊥, z) = E(r⊥, z)exp [i∆Φ(r⊥)] . (48)

The SXRSS system is modeled as a sequence of such transforms. Note that by the convolution theorem, this can also
be done (often with greater numerical efficiency) with Fourier transforms in the spatial frequency domain of r⊥.

The phase shift ∆Φ for the optical elements can be determined from the light path function and from the phases
embedded in the Fresnel integrals. By comparing these and with the aid of the M matrix elements in (42), one can
deduce that the phase deformation is

∆Φ(x, y) =
2πN0

sin θd

∆k

k0
x+

k

2µftan
x2 +

k

2fsag
y2 − kC1,2

x

sin θd
y2 − kC3,0

x3

sin3 θd
(49)

Note that the horizontal plane coordinate is rotated into the coordinate system of the outgoing diffracted ray. The
effect of the grating is included by applying this phase to the field rescaled in the horizontal plane by µ = sin θd/ sin θi
at point P . Propagating a distance r2 to the slit, the field at point B is then

E(r⊥, r2) =
ik

2πr2
e−ikr2

∫
E(x′/µ, y′, r1) exp

[
i∆Φ(x′, y′)− i k

2r2

[
(x− x′)2 + (y − y′)2

]]
dx′dy′. (50)

This is straightforward to extend through the M2 mirror downstream.

VI. TWO-COLOR GRATING EQUATIONS

We now consider a grating that has an alternating pattern of groove densities in the x0 direction to produce two
colors. This patterning design was chosen as a simple practical way for the incident beam to encounter two different
line densities in order that two colors within the FEL bandwidth colors go into the same diffraction angle. In this
case we can describe the groove density in Eq. (8) as

N(x0) = N0 +
δN

2
sgn

(
sin

2πx0

D

)
+N1x0 +N2x

2
0 (51)

This square-wave pattern switches between densities N
(1)
0 and N

(2)
0 with difference δN = N

(2)
0 − N (1)

0 and period

D = 2π/κ. For 2jπ < κx0 < (2j + 1)π the grating density is N0 + δN
2 = N

(2)
0 , while for (2j − 1)π < κx0 < 2jπ the

grating density is N0 − δN
2 = N

(1)
0 . The VLS aspect of the grating is maintained. The line density across the grating

surface for the two color design with a D = 250 µm period and δN = 10−3N0=1.123 lines/mm density difference is
shown in Fig. 8.

Using the condition ∂F
∂x0

= 0 from Eq. (2) and the relation dn
dx0

= N(x0) from (8), the two-color grating equation is

cos θi − cos θd = mλ

(
N0 ±

δN

2

)
. (52)

The relative difference in the line densities equals the relative color separation δω = ω2 − ω1,

δN

N0
=
δω

ω0
. (53)
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FIG. 8: Two color grating density across grating surface assuming a D = 250 µm period, δN/N0 = 0.1%, N1 = −1.6 mm−2,
and N2 = 0.002 mm−3.

where ω0 = (ω2 +ω1)/2 is the average frequency. The two color x-ray seed spectrum and temporal profiles are shown
in Fig. (9) where the color separation is set to be δN/N0 = 0.1%. This setting is chosen so that the two colors lie
within the incoming SASE bandwidth such that reasonable power can be taken from each color to re-seed the FEL.
To model the effect of re-seeding and overlap with the electron beam, the spectra and temporal profiles are calculated
by integrating the seed fields along z in the downstream 3.3 m undulator over the round Gaussian electron beam
transverse profile. Each color has the same relative bandwidth as the single color grating, even though each color hits
half then number of grooves on the grating surface. This is because, in the unclosed optical dispersion design of the
SXRSS system, the seed bandwidth is ultimately determined by the transport and overlap with the electron beam.
The two colors interfere in the time domain to produce an intensity modulation with period 2π/δω = 2πN0/ω0δN ,
which ranges from about 14 fs at 300 eV to 3.5 fs at 1200 eV for δN/N0 = 0.1%. It is interesting to note that, because
of the quadratic phase structure and frequency chirp on the seed (see discussion in Sec. IV), the seed pulse duration
is much larger than that expected from the inverse seed bandwidth. In the two color case, this leads to a pulse with
more temporal modulations.

Figure 10 shows the dispersed profiles at the slit, assuming a σω/ω0 = 10−3 bandwidth Gaussian input pulse at the
grating for illustration. The two colors used for seeding are the portions that intersect the center x = 0 line, i.e., a
narrow slit. Smaller sidebands are also produced at ω1,2 ± ω0/DN0 due to the square-wave density variation. These
sidebands can lie within the seeded FEL bandwidth to produce additional colors if 1/DN0 < 2ρ. To preserve the
two color mode, this compels making D small enough to push the sidebands outside the FEL bandwidth. However,
this must be balanced with minimizing the relative impact of the transition region between stripes if D is made too
small. Assuming a transition region of about 10 µm, this gives a range of about D = 100− 400 µm with a target of
D = 250 µm for the SXRSS parameters.

Figure 11 shows the evolution of the spot size for the two color grating, for comparison with the one color case in
Fig. 4. The two color design produces a much larger beam size in the horizontal plane, as expected.

Snapshots of the pulse intensity in the dispersive x − ω plane as the pulse propagates from the slit to inside the
downstream undulator are shown in Figs. 12 and 13 for the 300 eV and 1200 eV cases, respectively. In the 300 eV case
there is good color separation for a 40 µm wide slit. For 1200 eV, however, there is some frequency overlap, which is
manifest as interference fringes at the spatial focus just downstream of M2. In both cases, the σx = 28 µm electron
beam sees well-separated colors whose individual bandwidths shrink steadily along z as the dispersion dominated
beam expands through the undulator. The resulting seed spectra and time profiles that overlap the e-beam are shown
in Fig. 9.

Figure 14 shows the results of a seeded two-color XFEL simulation with ginger on an ideal 65 fs tophat beam
profile. We consider an LCLS-II beam with 1.5 kA, 0.4 MeV RMS energy spread and 0.4 µm emittance. The seed
power in each color is 50 kW. In the initial stages of amplification, the FEL behaves as a linear amplifier so the FEL
pulse mimicks the seed pulse shape; see Fig. 14 (top). As the FEL process starts to saturate (Fig. 14, middle), nonlinear
growth reduces the fringe contrast, while radiation slippage effects shorten the temporal spike duration. Finally, in
the post-saturation regime (Fig. 14, top), the pronounced spikes become about 1 fs FWHM in duration. Depending
on the required application, we note that the number of temporal spikes can be adjusted in principle by manipulating
the electron beam length, as afforded by the seed pulse duration. In addition, increasing the photon energy will result
in larger absolute two-color separation, and per 2πN0/ω0δN , will reduce the temporal spike durations.
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FIG. 9: Seed spectrum (left) and temporal pulse profile (right) from full transport simulations of the SXRSS system with
torodial VLS single color (red) and two color (blue) gratings, integrated over the electron beam. Top: 300 eV central energy.
Bottom: 1200 eV central energy.

FIG. 10: Two color x−ω space at slit from σω/ω0 = 10−3 bandwidth pulse at 300 eV (left) and 1200 eV (right). The alternating
grating line density has δN/N0 = 0.01% color separation and D = 250 µm period.

FIG. 11: Transverse x-ray beam envelope with two color grating at 300 eV (left) and 1200 eV (right) with 10 µm slit width.
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FIG. 12: Evolution of two color x − ω space at 300 eV from the M2 mirror to the entrance of the downstream undulator. A
40 µm wide slit is assumed.

FIG. 13: Evolution of two color x− ω space at 1200 eV from the M2 mirror to the entrance of the downstream undulator. A
40 µm wide slit is assumed, for which the central frequencies from the two diffraction angles initially overlap.

VII. SUMMARY

We have presented the basic theory for the diffraction grating at the SXRSS at LCLS and LCLS-II. From the light
path function, one is able to derive the basic grating diffraction and focusing properties. The ABCD matrix formalism
is then examined, both for a monochromatic beam and for a finite pulse duration, which yields useful scaling and
relations on the evolution of the transverse beam envelope, the image and waist locations, and the seed resolving
power. We then introduce a design for two-color grating that contains an alternating pattern of grove densities to
place two colors within the FEL bandwidth into the same forward diffraction angle, enabling two color FEL operations.
We explored theoretically and numerically the grating properties, as well as the final seeded XFEL performance.
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FIG. 14: Ginger simulation of two-color seeding at 310 eV (4 nm) with 0.31 eV separation in the exponential (top), saturation
(middle) and post-saturation (bottom) regimes. Temporal pulse front is to the left.
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