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1 Overview 
The hard X-ray seeding baseline deliverable for LCLS-II project will be to re-purpose the 

existing thin diamond crystal based wake-field solution that was implemented for LCLS-I 
(Amann et al., 2012) shown in Figure 1, with the necessary modification to accommodate the 
change of the X-ray polarization to the vertical direction. It will not be used for the LCLS-II high 
repetition rate hard X-ray FEL beam from 1 to 5 keV, but rather for the low repetition rate (up to 
120 Hz) beam generated by the existing normal-conducting Cu Linac and a new variable gap 
undulator, operating in the photon energy range of 4 to 12 keV, with possible extensions to lower 
energies to 3 keV and higher energies to 25 keV. The repurposed and modified seeding system is 
expected to provide comparable seeding performance to the existing LCLS-I system, which 
worked with an FEL beam generated from a fixed gap undulator and polarized in the horizontal 
direction. There is no seeding deliverable in the photon energy range of 1 to 3 keV, for it requires 
significant R&D effort in X-ray optics*.  

 

 
 

Figure 1.  The hard X-ray self-seeding system installed in the LCLS-I undulator hall in unit #16, upstream of 
undulator #17 and downstream of undulator #15. The main components are the vacuum vessel 
hosting the thin diamond crystal and the magnetic chicane for temporal and spatial overlap. 

1.1 Hard X-ray self-seeding based on Bragg forward scattering 
The LCLS-I hard X-ray seeding solution was is based on the self-seeding principle shown in 

Figure 2, whereby an X-ray seed gs is generated from a broadband SASE beam g produced in the 

                                                             
*	Although	conceivably	a	reflection	grating	based	solution	could	be	used	from	1	keV	and	up	to	possibly	2	keV,	and	a	
silicon	crystal	working	in	Bragg	reflection	geometry	could	cover	the	2	to	3	keV	energy	range,	albeit	challenging	issues	
remain	in	high	absorption	loss	and	a	scattering	geometry	close	to	that	of	back-scattering,	creating	long	optical	delay	
that	might	require	using	the	fresh	bunch	technique.	
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upstream undulator section and diffracting off a thin crystal. The quasi-monochromatic seed(s) is 
contained in the forward Bragg scattered beam in transmission and delayed in time by many 
femtoseconds from the main SASE peak. A magnetic chicane is then used to delay the same 
electron bunch e- to re-overlap temporally and spatially with the seed gs in the downstream 
undulator section for amplification, in addition to washing out the effect of the micro-bunching 
already developed in the upstream undulator (Geloni, Kocharyan, and Saldin 2010a; Geloni, 
Kocharyan, and Saldin 2010b). This scheme was successfully demonstrated (Amann et al., 2012) 
and has been part of the LCLS-I enhanced FEL production capabilities for the users.  

 

 
 

Figure 2.  Operating principle of the hard X-ray self-seeding implemented for LCLS-I. The quasi-
monochromatic seed emerges from the forward Bragg scattered beam with a time delay of many 
femtoseconds†.  

1.1.1 Existing crystal arrangement for LCLS-I horizontal polarization 
The LCLS-I undulator produces linearly polarized X-ray FEL radiation in the horizontal 

direction as shown in Figure 3. The thin crystal was oriented in such a way that the diffraction 
plane ends up normal to the polarization p, i.e., being in the s-geometry. The SASE beam g was 
designed to impinge at the center of the crystal and define the beam axis z, while the rotation axis 
x of the pitch (incidence) angle‡ q was designed to also cross at the center of the crystal and to be 
perpendicular to z. The beam axis of the electron bunch e- was shifted from the beam axis x by an 
amount dh as required by the minimum stay-clear. When tuning the seeding energy by rotating 
the crystal about the x axis, the beam clearance dh remained unchanged, and there was little 
walking of the beam on the crystal within the tolerances of mechanical assembly. The decision to 
use the s-geometry for diffraction was based on the fact that the scattering would yield the 

                                                             
†	The	Bragg	reflected	beam	is	also	perfectly	good	for	seeding,	but	cannot	be	easily	utilized	due	to	diffraction	geometry	
unless	additional	crystals	are	used	to	bring	it	back	into	the	electron	beam	path.	Even	then,	the	optical	delay	is	so	long	
that	again	a	fresh-bunch	technique	is	needed.		
‡	The	Bragg	angle	qB	=	q	if	scatter	symmetrically;	whereas	qB	=	q ±	a, 	if	scatter	asymmetrically,	where	a	is	the	angle	
between	the	crystal	surface	and	the	Bragg	planes.		
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maximum seed power regardless of the scattering angle 2qB, i.e., the polarization factor 
cos2(2p^o) is always equal to unity, where o is the polarization of the scattered radiation. 

 
Figure 3.  Schematics of the existing hard X-ray self-seeding arrangement for LCLS-I. The beam axis z and 

rotation axis x are orthogonal and in the horizontal plane. The electron beam axis is also in the 
horizontal plane but offsets from x by an amount dh from the edge of the crystal. The FEL 
polarization p is in the horizontal plane as well, normal to the diffraction plane in the vertical, 
resulting in the s diffraction geometry. 

1.1.2 New crystal arrangement for LCLS-II vertical polarization 
A change was made for the LCLS-II variable gap undulator to produce linearly polarized X-

ray FEL radiation in the vertical direction as shown in Figure 4. To accommodate this 
polarization rotation, studies were done to assess the impact on the seeding performance if the 
existing LCLS-I hard X-ray self-seeding system shown in Figure 1 were to be simply repurposed 
without any material modifications, including the relative location in the undulator system. It was 
found that the seed power would have been reduced by the polarization factor cos2(2p^o) = 
cos2(2qB), and since the energy coverage of the installed diamond crystal was such that the Bragg 
angles were not too far from 45°, the reduction in the seed power would have been quite 
substantial. The simplest option considered was to rotate the entire existing seeding system by 
90°, making the change in polarization complete transparent to the downstream undulators. This 
option, however, would have resulted in major mechanical interference issues and was deemed 
not viable. The final decision was then made to make certain modifications to the crystal itself 
and its rotation assembly, but not the magnetic chicane. 

 
In the new arrangement, the diamond thin crystal will be oriented with its surface normal in 

the horizontal plane, and the diffraction plane will also be in the horizontal plane and normal to 
the polarization p, thus retaining the s-geometry. The SASE beam g, which defines the beam axis 
z, will impinge in the center part of the crystal, and the rotation axis of the pitch angle q is now in 
the vertical direction y and still perpendicular to z, but does not cross at the center of the crystal. 
Instead, axis y will be pivoted close to the edge of the crystal such that the clearance between the 
crystal dh and the electron beam will not be greatly affected while varying the incidence angle. 
The axis of the electron bunch e-will be kept at a similar distance from the z axis. The off-axis 
pivoting on the crystal edge would result in certain degree of beam walking on the crystal, an 
undesirable consequence of the compromises made to not modify the magnetic chicane, and 
immediately raises the question as to whether or not the peripheral area of the crystal is just as 
good as the center that seeding performance is not at all impacted. This is because that the 
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original crystal that was ultimately chosen to be installed in the LCLS-I system was more perfect 
and had less defects at the center based on X-ray topographical measurement. However, a quick 
check by moving the crystal close to the edge did not reveal discernable degradation to the 
seeding quality.  

 
Figure 4.  Schematics of the new hard X-ray self-seeding arrangement for LCLS-II. The beam axis z and 

rotation axis x are orthogonal and in the vertical plane. The electron beam axis remains in the 
horizontal plane but offsets from x by an amount dh from the edge of the crystal. The FEL 
polarization p is in the vertical plane, normal to the diffraction plane in the horizontal, retaining 
the s diffraction geometry.  

 
The installed crystal is a 100 µm thick diamond with a [001] cut. The possible extension of the 

operating energy range to below 4 keV would require either a thinner, i.e., ~ 58 µm, crystal of the 
[001] cut, or a [111] cut of similar thickness at 100 µm. This is due to the consideration that 
transmission through the thin crystal becomes more important when going to lower photon 
energies. If the installed [001] cut crystal is used to diffract asymmetrically off the [111] planes to 
go below 4 keV to 3 keV, the crystal will be at an oblique angle of 35.26°, effectively increasing 
the crystal thickness by 73% to 173 µm and reducing the seed power by a factor of 10 to only 
0.4% transmission. This is the recommendation by the review committees to include a dual 
crystal option as an additional modification to the existing system.  

 
The dual diamond crystal option of a) a thinner 58 µm [001] cut crystal or b) a similar 

thickness of 100 µm [111] cut crystal could introduce potential issues with the lattice quality. A 
thinner sample is more prone to mechanical strain from mounting, since the mechanical rigidity is 
proportional to the third power of the thickness. A [111] cut crystal is more difficult to polish, and 
is more prone to surface roughness and nonuniformity, thus resulting in wavefront distortions 
related to phase errors. This note will be focusing on the impact of either bending or phase errors 
on the seeding performance by using X-ray dynamic diffraction calculations to examine the 
extent of the distortions in the seed fields induced by the crystal imperfections.  
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2 Seeding wakefield calculations 
Hard X-ray self-seeding based on Bragg forward scattering was first proposed by Geloni, 

Kocharyan, and Saldin, and a numerical treatment of the seed field was provided specially for a 
perfect thin diamond crystal using the Kramers-Kronig relations (Geloni, Kocharyan, and Saldin 
2010a; Geloni, Kocharyan, and Saldin 2010b). The amplitude and relative delay of the quasi-
monochromatic “seed” or “wakefield” in transmission were computed for a large number of 
single shots of the SASE field from the upstream undulators. Later Lindberg and Shvyd’ko put 
forth a different treatment within the general framework of the X-ray dynamical theory but 
calculating only the Forward Bragg Diffraction (FBD) component for a ultrashort and laterally 
finite X-ray pulse. They were able to obtain analytical expressions for the spatiotemporal 
distribution and power of the wakefield, which included other interesting effects such as the 
dependence on the crystal thickness and a transverse spatial shift linked to the temporal delay 
(Lindberg and Shvyd’ko, 2012; Shvyd’ko and Lindberg, 2012). To calculate the impact of lattice 
imperfections on the wakefield, we will stay with the approach laid out in the original proposal of 
the technique (Geloni, Kocharyan, and Saldin 2010a; Geloni, Kocharyan, and Saldin 2010b), but 
also only account for the FBD part of transmitted beam. First, we show the results on perfect 
crystals using an input field of a) a Green’s function at a small time offset with a perfect 
wavefront, and b) simulated SASE field generated from Start-To-End (S2E) simulations with a 
perfect wavefront, for three different photon energies at 4, 8 and 12 keV (Marcus, 2017). The 
results on strained crystals are then presented for both kinds of input by re-formulating the 
calculation to that of a perfect crystal but a distorted wavefront. No proof of the validity of the re-
formulation will be given, and the findings should be taken as a more practical and convenient 
approximation to a more rigorous and difficult treatment, one that possibly involves methods like 
the multi-lamellar approximation for bent crystals or the Penning-Polder approximation for bent 
Laue crystals, or solving the Takagi-Taupin equations for X-ray dynamical scattering from 
strained crystals (Takagi and Wills 1962; Taupin, 1964).  

2.1 Wakefields for perfect crystals 
In the approach taken by Geloni, Kocharyan, and Saldin (Geloni, Kocharyan, and Saldin 

2010a; Geloni, Kocharyan, and Saldin 2010b), the spectral property of a thin perfect crystal at the 
Bragg condition could be obtained by using the scientific computational software XOP2.4 
(https://www1.aps.anl.gov/Science/Scientific-Software/XOP) toolkit for perfect crystals, where 
both the reflectivity R(w) or transmissivity T(w) can be calculated and given in either the s- or p-
geometry for a linearly polarized beam at a given frequency w. The amplitude of the field eT(w) 
in transmission at w is simply taken as square-root of the intensity, i.e., eT(w) = √{T(w)}. The 
phase of the frequency component fT(w), is related to the amplitude via the Kramers-Kronig 
relations, and thus can be computed accordingly. The pair{eT(w), fT(w)}allows the calculation of 
any input field via Fourier transform and then its inverse transform.  

 
The wavefront is assumed to be perfectly flat upon incidence onto the crystal, i.e., the incident 

angle q is exactly given by the beam propagation direction z and the crystal surface for symmetric 
reflections as shown in Figure 5. For asymmetric reflections, the incidence angle is modified by 
the asymmetric angle Q. Given the geometry of how the diamond crystal was mounted in the 
seeding vessel, the reflections used to cover the energy range were the symmetric [004] at 12 
keV, symmetric [004] at 8 keV, and asymmetric [111] at 4 keV using the [001] cut with an 
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asymmetric angle Q of 54.7356° from the surface. The scattering is always in the s geometry as 
shown in Figure 4. The thickness of the diamond is assumed to be 100 µm. 

  

  
Figure 5.  Incident FEL beam with a perfect wavefront onto the diamond crystal. The incident angle is simply 

given by the angle q between the beam propagation direction z and the surface of the crystal for 
symmetric reflections. For asymmetric reflections, the incidence angle must be modified by the 
asymmetric angle Q. p is a unit vectors, indicating the polarization in the s scattering geometry.    

2.1.1 Input field of a Green’s function in time with a perfect wavefront 
First, we show the results for an input field of a quasi- delta-function in time at t0 = 2.536 fs, 

which was assumed to have the a Gaussian lineshape with an arbitrary maximum and a FWHM in 
intensity of 0.082 fs, and a flat phase across the pulse duration. The intensity of the wakefield is 
shown in Figure 6, Figure 7 and Figure 8, for photon energies of 12, 8 and 4 keV, respectively. 

  
Figure 6.  The wakefield intensity including only the Forward Bragg Diffraction (FBD) part of the total 

transmitted beam at 12 keV of the diamond [004] symmetric reflection. The light blue curve is 
for the s scattering geometry, and the brown curve for the p geometry for comparison. 
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Figure 7.  The wakefield intensity including only the Forward Bragg Diffraction (FBD) part of the total 

transmitted beam at 8 keV of the diamond [004] symmetric reflection. The light blue curve is 
for the s scattering geometry, and the brown curve for the p geometry for comparison.  

  
Figure 8.  The wakefield intensity including only the Forward Bragg Diffraction (FBD) part of the total 

transmitted beam at 4 keV of the diamond [111] asymmetric reflection. The light blue curve is 
for the s scattering geometry, and the brown curve for the p geometry for comparison.  
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lending strong credence to the accuracy of the phase calculation. Secondly, there are many orders 
of the wakefields, and the orders are much widely separated in time for the p scattering geometry 
than for s. This is due to the fact that the bandwidth of the reflection in the p geometry is 
generally much narrower than that of s. Finally, the amplitude of the s geometry is much 
stronger than that of p, as it was the very reason that the seeding crystal will be rotated to 
accommodate the rotation of the polarization of the LCLS-II hard X-ray FEL beam.  

2.1.2 Input field of a simulated SASE field with a perfect wavefront 
In this section, we show the results for an input field from a single realization of a S2E 

simulation (Marcus, 2017), which exhibits the spiky nature of a SASE beam, not only in 
amplitude but also in phase across the pulse duration, which was about 50 fs. The intensity of the 
wakefield is shown in Figure 9, Figure 10, and Figure 11, for photon energies of 12, 8 and 4 keV, 
respectively. 

  
Figure 9.  The wakefield intensity using a simulated SASE input field and including only the Forward Bragg 

Diffraction (FBD) part of the total transmitted beam at 12 keV of the diamond [004] symmetric 
reflection. The light blue curve is for the s scattering geometry, and the brown curve for the p 
geometry for comparison.  

 
The three important conclusions described in Section 2.1.1 for a Green’s function input are 

still valid for a simulated SASE input, although the prompt behavior is now masked by the long 
pulse duration which starts at t = 0. An additional interesting but somewhat unexpected result is 
that the wakefield outside of the original input pulse exhibits the same smooth appearance as in 
Figure 6 or other figures for a Green’s function input, very much devoid of the spikiness of the 
input field. In Figure 11 for photon energy at 4 keV, however, the amplitude of the wavefield also 
shows large variations in time, but on a time scale larger than that of the wakefield itself, 
mimicking the long time scale variation in intensity of the input SASE field, which is lacking in 
those for the 12 or 8 keV case in the particular realization of the S2E simulation. It is worthwhile 
and quite important to use different SASE realizations to confirm this observation.  
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Figure 10.  The wakefield intensity using a simulated SASE input field and including only the Forward Bragg 

Diffraction (FBD) part of the total transmitted beam at 8 keV of the diamond [004] symmetric 
reflection. The light blue curve is for the s scattering geometry, and the brown curve for the p 
geometry for comparison.  

  
Figure 11.  The wakefield intensity using a simulated SASE input field and including only the Forward Bragg 

Diffraction (FBD) part of the total transmitted beam at 4 keV of the diamond [111] asymmetric 
reflection off a [001] cut. The light blue curve is for the s scattering geometry, and the brown 
curve for the p geometry for comparison. 

0 50 100 150 200

In
te

ns
ity

 (a
.u

.)

102

103

104

105

106

107

108

Time (fs)

:

<

0 50 100 150 200

In
te

ns
ity

 (a
.u

.)

102

103

104

105

106

107

108

Time (fs)

<

:



L C L S - I I  T E C H N I C A L  N O T E  

August 18, 2017 LCLSII-TN-17-xx 11 

2.2 Wakefields for strained crystals emulated by wavefront distortions 
To calculate the impact of lattice imperfections on the wakefield, one could in principle make 

use of rigorous but difficult methods like the multi-lamellar approximation for bent crystals or the 
Penning-Polder approximation for bent Laue crystals, or solving the Takagi-Taupin equations for 
X-ray dynamical scattering from strained crystals (Takagi and Wills 1962; Taupin, 1964). 
Instead, we have taken a more practical and convenient approach by casting the problem in a 
different light, i.e., re-formulating the calculation of a strained crystal irradiated by a plane wave 
of a perfectly flat wavefront to that of a perfect crystal by a plane wave of a distorted wavefront. 
Additional assumption is also made that a flat wavefront can still be defined locally by the local 
curvature, and an average wavefront then defines the direction of beam propagation. No proof of 
the validity of this re-formulation will be given although similar treatment has been used 
previously, and the findings described below should be taken as an approximation to provide 
some quantitative assessment of a situation whose understanding could otherwise become rather 
intractable. Again, we first show the results on strained crystals using an input field of a) a 
Green’s function at a small time offset, and b) simulated SASE field generated from S2E 
simulations (Marcus, 2107), for three different photon energies at 4, 8 and 12 keV. 

  
Figure 12.  a) Incident FEL beam onto a distorted diamond crystal. The incident angle is given by the angle 

q between the beam propagation direction z and the average surface (for symmetric reflections), 
with a correction term proportional to the angle dq between the local surface and the average 
surface. b) Equivalent geometrical representation in terms of a perfect crystal but a distorted 
wavefront. For asymmetric reflections, the incidence angle must also be modified by the 
asymmetric angle Q. p is a unit vectors, indicating the polarization in the s scattering geometry. 

 
A beam with a perfect wavefront is assumed to be incident onto a strained or distorted crystal 

in a symmetric reflection, the local incident angle ql is given by the angle q between the beam 
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incidence angle is also modified by the asymmetric angle Q. Three reflections were used to cover 
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asymmetric [111] at 4 keV using the [001] cut with an asymmetric angle Q of 54.7356° from the 
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surface. The scattering is again in the s geometry as shown in Figure 4. The thickness of the 
diamond is assumed to be 100 µm. 

2.2.1 Input field of a Green’s function in time with a distorted wavefront 
First, we show the results for an input field of a quasi- delta-function in time at t0 = 2.536 fs, 

which was assumed to have the a Gaussian lineshape with an arbitrary maximum and a FWHM of 
0.082 fs (in intensity), and a flat phase across the pulse duration. The intensity of the wakefield 
and phase are shown in Figure 13 and Figure 15, for photon energy of 12 keV, and Figure 15 and 
Figure 16 for 8 keV, respectively.  For each energy, the wakefield is calculated for different 
distortion angles at 1, 10, 100, and 1000 µdeg as the incidence angles, with 1 µdeg = 17.45 nrad. 
For comparison, the natural divergence of an X-ray FEL at 8 keV is about 2.5 µrad or 143 µdeg. 
The Darwin width of the diamond [004] reflection is about 17 µrad, or 974 µdeg.  

  
Figure 13.  The wakefield intensity including only the Forward Bragg Diffraction (FBD) part of the total 

transmitted beam at 12 keV of the diamond [004] symmetric reflection in the s scattering 
geometry. The light blue curve is at the Bragg angle q0 = 35.404513°, and the light green curve 
at negative 1 mdeg from q0 but is barely differentiable from that on Bragg. The intensities at 1, 
10 and 100 µdeg were not shown for the sake of clarity. 

 
The calculated wavefield intensities at 12 keV at different incidence angles shown in Figure 

13 have barely any discernable differences even for distortion angles as large as 1 mdeg. In 
contrast, the phase shown in Figure 14 reveals appreciable change from that of exact on-Bragg 
incidence, and depends linearly on time within the regions of large phase jumps corresponding to 
the “troughs” of the wavefield amplitude. The rate of the linear phase change increases with the 
magnitude of the distortion angle dq from the Bragg condition, and is positive for negative dqs, 
and vice versa. The similar behaviors can be observed in intensity and phase at 8 keV as shown in 
Figure 15 and Figure 16, although the rate of linear phase change is smaller than at 12 keV for the 
same deviation angle dq.  
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Figure 14.  The wakefield phase (unwrapped) including only the Forward Bragg Diffraction (FBD) part of 

the total transmitted beam at 12 keV of the diamond [004] symmetric reflection in the s 
scattering geometry. The light blue curve is at the Bragg angle q0 = 35.404513°, and the dark 
brown, light brown, and purple curves are at negative 1, 10, and 100 µdeg from q0, respectively. 
The red curve is for positive 100 µdeg from q0, which clearly shows symmetric dependence. 

  
Figure 15.  The wakefield intensity including only the Forward Bragg Diffraction (FBD) part of the total 

transmitted beam at 8 keV of the diamond [004] symmetric reflection in the s scattering 
geometry. The light blue curve is at the Bragg angle q0 = 60.344732°, and the light green curve 
at negative 1 mdeg from q0 but is barely differentiable from that on Bragg.   
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Figure 16.  The wakefield phase (unwrapped) including only the Forward Bragg Diffraction (FBD) part of 

the total transmitted beam at 8 keV of the diamond [004] symmetric reflection in the s 
scattering geometry. The light blue curve is at the Bragg angle q0 = 60.344732°, and the dark 
brown, light brown, and purple curves are at negative 1, 10, and 100 µdeg from q0, respectively. 
The red curve is for positive 100 µdeg from q0, which clearly shows symmetric dependence.  

 
A linear phase change in time rf = df/dt is equivalent to a shift or dispersion in frequency or 

energy of the seed field. According to the Bragg condition, 2dsinq0 = l, the change in energy is 
simply given by rf = de = - e•ctanq0dq. For diamond [004], rf = -1.6883x104dq eV at 12 keV and 
rf = -4.5549x103dq eV at 8 keV, respectively. For example, at negative 100 µdeg, rf = 29.5 meV 
at 12 keV and rf = 7.9 meV at 8 keV, comparing to the Darwin width (equivalent to FWHM) of 
the reflection of 0.125 eV at 12 keV and 0.080 eV at 8 keV, respectively, or a 1x10-5 relative 
bandwidth. Therefore, the effect of a distorted crystal on the seed field is essentially having 
spatial variation of the seeding energy depicted below.   
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The tolerance on the level of imperfection in the crystal can be now defined. The flatness of 
the crystals within the footprint of the incident beam should be that the growth in the bandwidth 
of the seed due to crystal distortions or strains should be better than what is required by the 
seeding performance requirement itself. For example, at 8 keV, the optical period of the X-ray 
radiation is T0 = l/c = 0.52 attoseconds, where c is the speed of light. For a pulse of duration T, a 
transform-limited seed must have a bandwidth better than T0/T, which is about 2.1x10-5 for T = 25 
femtoseconds. The Diamond [004] reflection should meet this requirement by a factor of 2. Thus, 
as long as the crystal distortions are less than what is equivalent to 0.080 eV at 8 keV, or 1 mdeg 
(rf ~ 80 meV) or 17 µrad, then the distortion will not impact the seeding performance. At 12 keV, 
the situation is little more demanding, a similar estimate gives the bandwidth limit at 1.4x10-5 for 
T = 25 femtoseconds, and the distortion limit at 400 µdeg (rf ~ 125 meV) or 7.4 µrad. The natural 
divergence of the FEL beam is on the order of 2.5 µrad, so it would not have any real significant 
impact on the bandwidth of the seed field, as this was more or less supported experimentally 
(Amann, et. al, 2012).  

2.2.2 Input field of a simulated SASE field with a distorted wavefront 
In this section, we show the results for an input field from a single realization of a S2E 

simulation (Marcus, 2017), which exhibits the spiky nature of a SASE beam, not only in 
amplitude but also in phase across the pulse duration, which was about 50 fs. The intensity of the 
wakefield and phase are shown in Figure 17 and Figure 18 for photon energy of 12 keV, and 
Figure 19 and Figure 20, for 8 keV, respectively.  For each energy, the wakefield is calculated for 
different distortion angles at 1, 10, 100, and 1000 µdeg as the incidence angles, with 1 µdeg = 
17.45 nrad. 

  
Figure 17.  The wakefield intensity including only the Forward Bragg Diffraction (FBD) part of the total 

transmitted beam at 12 keV of the diamond [004] symmetric reflection in the s scattering 
geometry. The light blue curve is at the Bragg angle q0 = 35.404513°.  
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Figure 18.  The wakefield phase (unwrapped) including only the Forward Bragg Diffraction (FBD) part of 

the total transmitted beam at 12 keV of the diamond [004] symmetric reflection in the s 
scattering geometry. The light blue curve is at the Bragg angle q0 = 35.404513°, and the dark 
brown, light brown, and purple curves are at negative 1, 10, and 100 µdeg from q0, respectively. 
The red curve is for positive 100 µdeg from q0, which clearly shows symmetric dependence.  

  
Figure 19.  The wakefield intensity including only the Forward Bragg Diffraction (FBD) part of the total 

transmitted beam at 8 keV of the diamond [004] symmetric reflection in the s scattering 
geometry. The light blue curve is at the Bragg angle q0 = 60.344732°.  
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Figure 20.  The wakefield phase (unwrapped) including only the Forward Bragg Diffraction (FBD) part of 

the total transmitted beam at 8 keV of the diamond [004] symmetric reflection in the s 
scattering geometry. The light blue curve is at the Bragg angle q0 = 60.344732°, and the dark 
brown, light brown, and purple curves are at negative 1, 10, and 100 µdeg from q0, respectively. 
The red curve is for positive 100 µdeg from q0, which clearly shows symmetric dependence.  
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