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Figure 1.1: LCLS-II feedback layout.

1 Overview

During the design, commissioning and operations of a Linac-driven FEL it is useful to
have modeling capabilities to abstract and analyze some of the complex problems involved
in LLRF and beam-based feedback in the comfortable environment of computer simula-
tions. The simulation framework presented here is a dramatic improvement of a previous
version written in Octave/Matlab [1], where extensively tested LLRF models are integrated
with a longitudinal phase space tracking simulator [2] along with the interaction between
the two via beam-based feedback using a computationally efficient simulation engine.

The models include beam instrumentation, considerations on loop delays for in both the
LLRF and beam-based feedback loops, as well as the ability to inject noise (both correlated
and uncorrelated) at different points of the machine including a full characterization of
the electron gun performance parameters. The Linac is divided into generic compounds
composed of an accelerating section followed by a bunch compressor (where the bunch
compressor can be enabled/disabled) and beam performance parameters are measured at
any stage of the machine for characterization and/or for use to apply beam-based feedback.
Time-series data is computed at a configurable simulation step size and results can be
visualized in both time and frequency domain, including transfer functions between any
noise source and beam performance parameters.

Figure 1.1 shows a high-level representation of the LCLS-II layout, as configured at
the time of this writing. The model described here represents each component of the
machine in a way that configuration parameters can be adapted as the machine layout and
configuration evolves (during the design or in future upgrades), where the contribution of
each noise source (correlated or uncorrelated) to the machine performance budget can be
quantified, including the ability to represent the effectiveness of different feedback loops to
reduce noise contributions under different configurations.
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Figure 2.1: Model hierarchy.

2 Model hierarchy

The accelerator model is intended to be modular in order to adapt to different config-
urations. The motivation behind this partitioning is to allow for different types of studies.
For example, one can focus on some localized effects at the RF station level where only
one station is simulated, or inspect how different cavities interact mechanically inside a
cryomodule, or run studies at a machine level in order to analyze slow beam-based feed-
back performance. In studies where not much detail on the internals of the cryomodules
or RF stations is needed, the models can be scaled in a way that computations of acceler-
ating fields are performed for the vector sum of an accelerating section. This reduces the
complexity of the models and reduces both computation time and memory usage.

The different model configurations described above are put in practice using a model
hierarchy shown in Figure 2.1. The first component is a simulation entity, which describes
simulation parameters such as time step size, total simulation time, etc. The simulation is
composed of one or more Linac sections, including a longitudinal beam dynamics simulation
to represent beam propagation from one Linac section to the next. One Linac section is
then represented as a series of cryomodules, optionally followed by a bunch compressor.
This is the fundamental building block of the accelerator, where one can imagine the case
of L1 in Fig. 1.1 with two cryomodules and no bunch compressor, followed by HL (with
a different frequency, beam phase relative to the RF, etc.) this time followed by a bunch
compressor (BC1 in this case).

Each cryomodule is then represented by a collection of RF stations, including inter-
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station interactions through a model of the mechanical resonances inside the cryomodule.
The couplings between the mechanical eigenmodes and individual electrical eigenmodes in
the cavities are represented, as well as the effect of tuners and piezos on the mechanical
resonances. Each RF station is composed of the typical RF system components, with an
N-cell cavity (including a configurable number of normal modes), a high-power RF source,
an FPGA controller, and the analog front-end (which represents anti-alias filtering, LLRF
noise, etc). The last stage of the hierarchy represents the cavity electrical eigenmodes,
where each has its own resonance frequency, Q and couplings.

In the next few sections we describe the models used in each layer of the hierarchy
shown in Fig. 2.1, starting bottom up so that the reader progressively understands every
component in each layer without making any assumptions.
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Figure 3.1: RF Station block diagram.

3 RF Station

The RF station model includes a multi-cell cavity (including different normal modes,
detuning and their different couplings), an FPGA controller, a saturation model for the RF
source, filters, etc. The RF station is modeled at baseband, where up and down conversions
in the real system are not considered and only the slowly varying amplitude and phase
modulations (or In-phase and Quadrature, I&Q) of a carrier at the RF reference frequency
are represented. The FPGA controller in a real system typically works on I-Q sampled
cavity fields. Representing the rest of the components in the RF station model at baseband
allows for a more computationally efficient implementation of the simulation code, while
not losing information of interest on the different complex signals. This approximation will
be explicitly illustrated when describing the cavity model equations.

The RF station model responds to the typical RF system topology, with an FPGA-
based system controlling the EM field inside an accelerating cavity as shown in Fig. 3.1. It
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also includes the cavity-beam interaction through beam loading, as well as different noise
sources, which can be either correlated or uncorrelated. The different components of the
RF station model are described in the rest of this section.

3.1 Cavity model

From EM theory, we know ~E and ~B fields inside a cavity can be broken down into
independent eigenmodes (independent solutions to Maxwell’s equations inside a cavity or

waveguide) [3]. For a 9-cell cavity, the highest ~E field along the cavity axis is obtained
for the π-mode. Ideally we would like to only excite that mode applying the proper input
signal, which is only is known from theory. However, this is hard to achieve in practice
as some other modes are present due to geometrical errors in the cavity shape or further
deformation due to mechanical forces that are generated.

The cavity model described here responds to a multi-cell cavity structure, with cou-
plings to the RF source, a cavity field probe and the beam. There are two aspects to
representing this problem: the complete EM field description inside the cavity and the
equivalent circuit representation, where the field description is needed in order to define
the equivalent circuit using simulation codes like Superfish [4]. It is convenient to use
the equivalent circuit representation in order to model the cavity behavior as well as its
interactions with the RF system and the beam.

Ideally, we would like to measure the EM fields from each mode present in the cavity
in order to control them appropriately. However, the best we can do is measure the overall
field in the cavity, designated here by ~Eprobe. It is measured in practice using a probe
antenna, and is theoretically given by

~Eprobe =
∑
µ

~Vµ/
√
Qpµ(R/Q)µ (3.1)

where ~Vµ is a representative measure of the energy stored in each electrical eigenmode µ,
designated as mode cavity voltage, and where Qpµ(R/Q)µ is the coupling impedance of the
probe port for that mode.

Alternatively, the expression for reverse (a.k.a. reflected) wave traveling outward from
the fundamental port includes a prompt reflection term, yielding

~Ereverse =
∑
µ

~Vµ/
√
Qgµ(R/Q)µ − ~Kg (3.2)

where Qgµ(R/Q)µ is the coupling impedance of the drive port of mode µ.

3.1.1 Electromagnetic eigenmode

A multi-cell cavity is represented by a series of coupled resonators (one per cell in
the cavity), each represented by an RLC circuit [5]. Decomposing the EM cavity fields
into eigenmodes and applying the principle of superposition we obtain the representation
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Figure 3.2: Electromagnetic eigenmode equivalent circuit.

expressed by equation 3.1 [6]. The equivalent circuit used to represent one cavity eigenmode
is shown in Fig. 3.2, where each mode’s accelerating voltage is added in order to obtain
the cavity overall accelerating voltage, as deduced from Eq. 3.1. Each mode has its own
value of ~V , (R/Q), Qx, and other characteristics that will be introduced later.

If we apply Kirchhoff’s current law to the mode’s RLC equivalent circuit (see figure 3.2,
µ refers to a particular eigenmode), we get:

~Iµ = ~ICµ + ~IRµ + ~ILµ (3.3)

where:

d~ICµ

dt
= Cµ ·

d2~Vµ
dt2

,
d~IRµ

dt
=

1

RLµ

d~Vµ
dt

and
d~ILµ

dt
= ~Vµ/Lµ (3.4)

Differentiating both sides of equation 3.3 and substituting using Eq. 3.4, the full vector
(complex) differential equation for the cavity accelerating voltage ~Vµ can be written as:

d2~Vµ
dt2

+
1

RLµCµ

d~Vµ
dt

+
1

LµCµ
~Vµ =

1

Cµ

d~Iµ
dt

(3.5)

which can be expressed as a function of the mode’s nominal resonance frequency ω0µ

(1/LµCµ = ω2
0µ) and loaded Q (1/RLµCµ = ω0µ/QLµ):

d2~Vµ
dt2

+
ω0µ

QLµ

d~Vµ
dt

+ ω2
0µ
~Vµ =

ω2
0µRLµ

QLµ

d~Iµ
dt

(3.6)

Taking the slowly varying envelope approximation [7] (ωfµ � ω0µ), separating voltage
and current into real and imaginary parts, assuming that the detune frequency varies slowly
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with respect to the carrier frequency (ωdµ � ω0µ) and that QLµ � 1, we can reduce the
order of equation 3.6 (a second-order band-pass filter centered at the resonance frequency)
to a first-order low-pass filter at baseband [8]:(

1− j
ωdµ
ωfµ

)
~Vµ +

1

ωfµ

d~Vµ
dt

= RLµ
~Iµ (3.7)

where ωfµ = ω0µ/2QLµ is the mode’s bandwidth and ωdµ = 2π∆fµ is the (time varying)
detune frequency, given as ωdµ = ω0µ − ωref , i.e., the difference between actual eigenmode
frequency ω0µ and the accelerator’s time base ωref .

Transposing the cavity drive term into a combination of the RF source incident wave
and beam loading (opposite sign indicating energy absorption by the beam), we can express
Eq. 3.7 as: (

1− j
ωdµ
ωfµ

)
~Vµ +

1

ωfµ

d~Vµ
dt

= 2 ~Kg

√
Rgµ −Rbµ

~Ibeam (3.8)

where ~Kg is the incident wave amplitude in
√

Watts, Rgµ = Qgµ(R/Q)µ is the coupling

impedance of the drive port, ~Ibeam is the beam current, and Rbµ = QLµ(R/Q)µ is the
coupling impedance to the beam.

The overall QLµ is given as 1/QLµ = 1/Q0µ + 1/Qgµ + 1/Qpµ , where 1/Q0µ represents
losses to the cavity walls, 1/Qgµ represents coupling to the input coupler, and 1/Qpµ

represents coupling to the field probe. (R/Q)µ is the shunt impedance of the mode in
Ohms, a pure geometry term computable for each particular eigenmode using E&M codes
like Superfish. Physically, shunt impedance relates a mode’s stored energy Uµ to the
accelerating voltage it produces, according to

Uµ =
V 2
µ

(R/Q)µω0µ

(3.9)

The only assumptions in the above formulation are that the cavity losses are purely
resistive, and thus expressible with a fixed Q0µ , and that no power is launched into the
cavity from the field probe. If other ports have incoming power, there would be additional
terms of the same form as 2 ~Kg

√
Rg.

The
ωdµ
ωf

term in 3.8 (the imaginary component of the cavity pole at baseband) represents

detuning. In software or hardware implementations, we can alternatively modulate that
term with Lorentz perturbations, or use a purely real pole (ωf ) and modulate the frequency
of the drive term. We prefer the latter, more convenient in computational terms. We then
define a vector ~Sµ such that:

~Vµ = ~Sµe
jθµ (3.10)

dθµ
dt

= ωdµ (3.11)
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Figure 3.3: Data path for the computation of a 9-cell cavity model.

yielding:

(
1− j

ωdµ
ωfµ

)
~Sµe

jθµ +
1

ωfµ

(
d~Sµ
dt

ejθµ + ~Sµ · jωdµejθµ
)

= 2 ~Kg

√
Rgµ −Rbµ

~Ibeam (3.12)

The governing equation for the mode’s accelerating voltage can thus be written as a set of
two first order differential equations (Eq. 3.13 and 3.11):

d~Sµ
dt

= −ωfµ ~Sµ + ωfµe
−jθµ

(
2 ~Kg

√
Rgµ −Rbµ

~Ibeam

)
(3.13)

Note that this state-variable equation is a pure low-pass filter, an advantage especially
in the FPGA implementation.

3.1.2 Software implementation

We started this section with the definition of ~Eprobe and ~Ereverse (see Fig. 3.1), given
by equations 3.1 and 3.2 respectively. These equations express the measured probe and
reverse fields as a function of eigenmode voltages (~Vµ) and their respective port couplings.
We also defined the state-variable equation governing the accelerating voltage for each
eigenmode in Eq. 3.13, where ~Vµ = ~Sµe

jθµ . We can therefore compute the cavity probe

and reverse signals as a function of the incident wave ~Kg and the beam current ~Ibeam.
Figure 3.3 shows the data path implemented in software in order to compute the re-

sponse of a nine-cell cavity (which can be configured for any type of cavity given the
definition of the electrical eigenmodes and couplings). Each internal bock represents the
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implementation of Eq. 3.13 for each eigenmode, and the summing junction at the end (tak-

ing the pre-factored eigenmode voltages) represents the computation of ~Eprobe and ~Ereverse

using Equations 3.1 and 3.2.
Note that there are two aspects represented in Fig. 3.3 which are not shown in the

equations. The first one is the use of ~Kgrfl
instead of ~Kg, as well as the terms ejϕx in the

factoring of each ~Vµ term before the summing junctions. These terms represent frequency
dependent propagation through cables and waveguides. In the case of the incident wave,
if we define TFwg(s) as the transfer function in Laplace domain of a wide-band filter
representing the waveguide between the directional coupler on the high-power forward
path and the cavity, we get:

~Kgrfl
(s) = ~Kg(s) · TFwg(s) (3.14)

where the minus sign of the reflection on the cavity coupler is represented in the summing
junction. This transformation takes into account the propagation of the reflection of the
incident wave back to the directional coupler. The cavity probe and reverse path also
follow a similar transformation but in this case represented by a phase shift through the
coaxial cable from the cavity probe and reverse ports and their respective ADCs in the
LLRF. These phase shifts are represented by the ejϕrevµ and ejϕpµ terms in Fig. 3.3, which
are frequency dependent due to dispersion in the coaxial cables, and therefore need to be
applied at this stage of the computation (before the summing junction).

The second aspect which has not been covered yet is the numerical discretization of
the first-order low-pass filter in the cavity response, represented by the blocks labeled
LPF@ωfµ in Fig. 3.3. The ODE integration is derived in Appendix A.1, where Eq. 3.13
can be written as Eq. A.5, where

~Vout = ~Sµ , p = −ωf and, ~Vin = e−jθµ
(

2 ~Kg

√
Rgµ −Rbµ

~Ibeam

)
(3.15)

as it can be deduced from Fig. 3.3. This block solves for ~Sµ, which is translated to
the mode’s accelerating voltage using equations 3.10 and 3.11, as indicated in the block
diagram.

In summary, using the computations shown in Figure 3.3 (couplings, rotations, etc.)
combined with the numerical discretization of the cavity filter described in Appendix A.1
applied every discrete simulation step, we can obtain time-series simulated data represent-
ing signal propagation through the multi-cell RF cavity, including the different eigenmodes
and dispersion through cables and waveguides.

3.1.3 Simulation results

A few unit tests have been designed in order to check the correspondence between the
numerical simulation results and the theoretical equations. The unit under test here is the
cavity model illustrated in Fig. 3.3. Some of these tests have little physical meaning and
are even unrealizable in practice, however this is the beauty of the simulation world, where
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Figure 3.4: Cavity unit test: Cavity response to a step function on the RF drive signal,
where the input signal is at the each mode’s resonance frequency.

Figure 3.5: Cavity unit test: Step response, beam coupling.
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Figure 3.6: Cavity unit test: Step response RF drive coupling at ωref for three different
frequency offsets.

one can isolate effects in the calculations for different purposes, in this case in order to
verify its own proper operation.

Figures 3.4 and 3.5 show the step response of three individual eigenmodes (π, 8π/9
and π/9 modes in this case). In these tests, the cavity routine is configured to have one
individual mode and the time-series simulation is run three times to obtain each one of the
three curves on the plots. This allows us to fit the step response curves for each eigenmode
individually, thus deducing mode bandwidths and couplings from the curve fit results.
Both the numerical curves and the curve fits are shown for each simulation run, where (in
the absence of noise as in this case) there is a very good correspondence between the two
(with errors in the order of 10−5 RMS).

In Fig. 3.4 we introduce a unit amplitude step signal on the RF drive port at the
mode’s resonance frequency (ω0µ), which is equivalent to driving the input drive signal
with a vector of unity length rotating at the mode’s offset frequency (ωdµ). The input

signals are then: ~Kg = ejθµ (dθµ/dt = ωdµ) and ~Ibeam = 0. As a result no ringing is
observed. The model is designed to have unity gain at the mode’s center frequency and
one can therefore deduce couplings to the drive input by measuring the steady-state values.
The step response is then fit to a 1st-order differential equation and the bandwidth of each
mode is deduced, matching the configuration settings. This test provides a verification for
the incident wave coupling impedance (Rgµ in Eq. 3.13) as well as the mode’s bandwidth
(ωfµ in the same equation).

In Fig. 3.5 we introduce a step signal on the beam input signal equivalent to 1 pC beam
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Figure 3.7: Cavity unit test: Step response RF drive coupling at ωref and step on the
detune frequency (amplitude)

charge (this nominal value is just anecdotal since we are interested in measuring couplings,

etc.). In this case ~Kg = 0, providing means to deduce the beam coupling impedance for
each eigenmode in a similar manner as described in the previous test. In both tests we
also evaluate the probe ( ~Eprobe in Eq. 3.1) and reverse field signals ( ~Ereverse in Eq. 3.2) and
compare them to the accelerating voltages, therefore being able to deduce the coupling
impedances to the probe and drive ports for each eigenmode (Qpµ(R/Q)µ and Qgµ(R/Q)µ
in Eq. 3.1 and 3.2 respectively).

At this point we have demonstrated the correct behavior of low-pass filter blocks in
Fig. 3.3 as well as the couplings to the input and output ports. We are now going to
demonstrate an important feature (cavity detuning). One can both configure an electrical
eigenmode to have a static frequency offset with respect to the RF reference, as well as
introducing a time-varying frequency offset due to Lorentz forces or other perturbations.

In Fig 3.6 we introduce a unit amplitude step signal on the RF drive port at the RF
reference frequency (ωref) (instead of at each mode’s resonance frequency as in the case
of Fig. 3.4). Each curve is reproduced in two equivalent ways in order to exercise two
features of the software: first by sweeping the setting for the so-called basis, or static,
offset frequency (the frequency offset between the mode’s resonance frequency and the RF
reference), and second by sweeping the setting for the frequency shift due to perturbations
such as Lorentz forces. All curves correspond to the same mode’s accelerating voltage,
where only the frequency offset changes, and is plotted in the complex plane to observe
the different degrees of ringing as frequency offsets are introduced.
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Figure 3.8: Cavity unit test: Step response RF drive coupling at ωref and step on the
detune frequency (phase).

Fig. 3.7 shows a combination of the previous exercises, where the cavity mode is initially
in perfect resonance. A step is applied to the drive signal at the mode’s resonance frequency
and the cavity field fills up following its time constant (quantified in previous tests). Then,
we apply a step to the detune frequency of 10 to 20 times the bandwidth of the cavity
mode (∆f1 = 100 Hz and ∆f2 = 200 Hz) and we observe the cavity decay following its
time constant along with ringing induced by the cavity being out of tune. Note that the
frequency modulations of the cavity field correspond to the frequency offset applied in
each case, and for the case where the step applied is of 100 Hz, the steady-state value is
equivalent to the one observed in fig. 3.6 for the same value of frequency offset.

The frequency modulation can be better observed in Fig. 3.8, where the phase of the
two cavity field signals is shown. Note the 0 deg. phase during fill time when the cavity
is perfectly in tune (and RF drive is purely real). The phase then starts varying when
the frequency offset step is applied. The slope of the phase corresponding to the angular
frequency shift applied, as indicated in the figure.

The proper representation of the detuning effects is important since this will be the
manifestation of the Lorentz forces on the cavity response. More details on how the electro-
mechanical interactions are represented will be given in Section 4.
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3.2 FPGA Controller

Feedback is necessary in order to guarantee the stability of the cavity fields. Latency
of the control loop limits the performance of the system and is typically implemented in
an FPGA in the form of a Proportional-Integrator (PI) Controller. A flow chart of this
controller is shown below, followed by the mathematical expressions.

kp

ki
∫ t

0
e(τ)dτ

Σ

Cavity

~Esp Σ
e(t)

− ~Eprobe

~Kdrive

Figure 3.9: Flow chart of the PI controller

Based on different factors, a reference cavity field (set point, ~Esp) is chosen as a target.
The cavity field is entirely defined by three figures: frequency, amplitude and phase. The
feedback control loop described here assumes a fixed frequency for the excitation signal
(where cavity detuning can be measured and controlled using other feedback loops) and
measures and controls the cavity field amplitude and phase (or equivalently I and Q com-
ponents in Cartesian coordinates). In the real system, the cavity field is measured using
an antenna probe, down-converted, filtered and digitized in the LLRF. As explained ear-
lier, this model works on complex vectors at baseband, where the up and down-converter
circuitry is omitted. As a result, the model takes discrete values of a sampled cavity field
as a complex input and produces a excitation signal to drive the high-power RF source,
also a complex vector. In practice, this drive signal is converted to analog, filtered and
up-converted in the LLRF. Here it will be directly connected to the RF amplifier model
block as shown in Fig. 3.1. The error e(t) is defined as the difference between the reference

value and the the current measurement of the cavity field ~Eprobe, and the job of the control
loop is to minimize this error as much as possible:

e(t) = ~Esp − ~Eprobe(t) (3.16)

This error is passed onto a proportional and integral controller, with (following text book
notation) respective gain constants kp and ki. Following the data path if Fig. 3.9, we see

that the FPGA drive signal ~Kdrive is altered according to:

~Kdrive = kpe(t) + ki

∫ t

τ0

e(t)dτ (3.17)

February 23, 2017 LCLSII-TN-17-06 15



LCLS-II TECHNICAL NOTE

Figure 3.10: FPGA unit test.

where ~Kdrive value is used to drive the high-power RF source feeding the cavity.

3.2.1 Software implementation

In order to implement the PI controller in software, we need to discretize the integral
term of Eq. 3.17. This term is shown below.

ki

∫ t

τ0

e(τ)dτ (3.18)

There are many ways to evaluate this integral. Most commonly utilized are right-hand,
left-hand, and mid-point Riemann sums, Trapezoidal Rule, or Simpson’s Rule. In our case,
we will simply use a Trapezoidal Rule, which basically comes out to averaging the value
of e(t) at the previous and current time step. Considering a very small time step is used,
this is a good approximation. Numerically, we have the following for the general case:∫ τn

τ0

f(τ)dτ ≈ ∆t

[
f(τ0)

2
+ f(τ1) + f(τ2) + ...+ f(τn−1) +

f(τn)

2

]
(3.19)

where the subscript n indicates the time step. To transform to actual time, one merely
uses the relationship τn = n∆t. Applied to our problem, we have the following:

ki

∫ τn

τ0

e(τ)dτ ≈ kiT

[
e0

2
+ e1 + e2 + ...+ en−1 +

en

2

]
(3.20)
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where again the superscript notation indicates the time step.
The overall update for ~Kdrive can then be expressed as:

~Kn+1
drive = kpe

n+1 + kiT
n∑
k=0

ek+1 + ek

2
(3.21)

Fig. 3.10 shows the result of a unit tests performed using the software implementation
of Eq. 3.21. The input signal and set-point are initially set to 0 and the FPGA routine is
exercised individually, in the absence of a plant or feedback loop. The PI controller is then
configured to have certain values of proportional and integral gains (kp and ki, as indicated
in Fig. 3.10) and a time-series simulation is run. After 0.2 seconds of simulation, a step is
introduced in the set-point (going from 0 to 1) and the drive signal is analyzed. Before any
error signal is present in the integrator state, the drive signal is modulated by the set-point
by a factor of kp. From that point the integrator behavior can be observed, where the slope
of the drive signal is given by the integral gain constant ki. The measured values of the
controller constants (indicated in Fig. 3.10) are compared with the configuration settings
in order to verify the proper behavior of the model.

The control signal generated by the PI controller is used to drive the RF amplifier,
which is described next.

3.3 RF Amplifier

For the purposes of including the RF amplifier response in the LLRF simulations we
have used two elements: clipping in order to emulate the amplifier saturation curve, com-
bined with a low-pass filter to limit the bandwidth of the amplifier and therefore limit the
speed at which the drive signal applied to the cavity can vary. It is useful, in practice, to
tweak the configuration of this model in order to match measurements done on the real
amplifier in use. Here we propose a clipping equation which has matched RF amplifier sat-
uration curves well in the past. However, if this equation does not match well a particular
instance other equations can be chosen.

Amplifier clipping is then described with a harshness parameter c, such that the output
signal ~Vout, based on its input ~Vin varies according to:

~Vout = ~Vin ·
(

1 + |~Vin|c
)−1/c

(3.22)

The saturated output amplitude from this equation is 1. While some phase shift with
drive level is observed in real amplifiers, this effect is not yet included in the model. Fig. 3.11
shows the output of the saturation routine as a function of the input for different values
of the harshness parameter c. Note the use of normalized units. In order to obtain units
of power, the model is configured to scale these values by the amplifier full-scale input
and output values. Also, as described earlier and not shown here is the use of a low-pass
filter (typically configured with a cutoff frequency in the MHz range) in order to limit the
bandwidth of the amplifier.
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Figure 3.11: RF Amplifier saturation test, where the output is plotted as a function of the
input for different values of the harshness parameter c in Eq. 3.22.

3.4 Phase Shifter

Phase shifts are encountered in several stages of the model. A phase shifter module
(not necessarily explicitly represented in block diagrams) is present in the software imple-
mentation and performs a phase shift of an input signal by an angle θ according to:

~Vout = ~Vin · ejθ (3.23)

Fig. 3.12 shows results of a unit tests performed on the phase shifter, where a sample
signal is shifted by different angles and the phase differences are measured and compared
with the phase angle parameter provided to the phase shifter software routine.

We have now described all the RF station building blocks shown in Fig. 3.1 except
for the noise sources. Correlated noise transported by the beam will be described in
Section 5.2. Uncorrelated noise on the digitized LLRF signals (forward, reverse and cavity
probe signals, see Fig. 3.1) is discussed next.

3.5 LLRF Noise

LLRF noise is dominated by ADC and preamplifier noise, which typically have broad-
band (white) and 1/f components. Here we only consider the broad-band component, as
digital LLRF controllers (with in-situ calibration schemes) are effective at rejecting low
frequency noise.
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Figure 3.12: Phase shift test.

RF systems include several components such as the RF cavity, filters, digitizers, mixers
(up and down converters), digital controller, etc. Some of these components are shown the
the block diagram in Fig. 3.1. Since different configurations of the RF system will result
in differences in its frequency response, we prefer to express each noise source in terms of
its Power Spectral Density (PSD).

It is useful to express RF analog signal processing and ADC noise in dBc/Hz, where
dBc is a logarithmic representation of the ratio between noise and carrier power. In the
accelerator case, the carrier represents the nominal cavity signal, in turn something close
to the full range of the ADC. Normalization by the bandwidth gives a true performance
number, independent of bandwidth (or equivalently, averaging). As mentioned earlier, we
are only considering broad-band noise, so we will use a single noise value expressed in
dBc/Hz, being constant over the entire frequency spectrum. This is a figure of merit for
the RF measurement channel, which will vary depending on the amplifiers and ADCs used.

In our simulation models we use pseudo-random number generators to emulate noise
sources, and typically express signals in normalized units, where the normalizing factor is
the nominal cavity voltage. In the case of LLRF broadband noise, we choose normally
distributed pseudo-random generated samples with zero mean and a variance calculated
using the LLRF noise specs (in dBc/Hz), the full range of the ADC, and the operating
bandwidth.
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Let us use as an example the measured noise PSD of the LLRF4 system:

PSDLLRF = −135 dBc/Hz = 10−13.5/Hz (3.24)

The total normalized noise power in a bandwidth B is then

NoiseLLRF = PSDLLRF ·B (3.25)

If we use 1µs simulation steps (∆tsim):

B =
1

2
· 1

∆tsim
=

1

2
· 1 MHz = 500 kHz (3.26)

LLRF systems typically sample the cavity field faster than 1 MHz. Taking a more
realistic sampling rate such as 100 MS/s (fS = 100 MHz), using 1µs simulation steps
would be equivalent to averaging 100 MHz samples by a factor n = 100, which leads us to
the same result:

B =
1

2
· fS ·

1

n
=

1

2
· 100 MHz · 1

100
= 500 kHz (3.27)

This means that we can use the simulation step to calculate the bandwidth, indepen-
dently of the actual sampling rate. While the choice of the latter has important practical
implications, it doesn’t affect the noise performance at this abstract level.

Once we know the bandwidth, we can obtain LLRF noise from the PSD using Eq. (3.25),
which can be expressed as:

NoiseLLRF =
PNoise

PADC

(3.28)

where PNoise and PADC can be given in any self-consistent power units, such as V 2, and
PADC refers to the full-scale level of the ADC. As mentioned earlier, we are interested
in expressing the LLRF noise in normalized units, using the nominal cavity voltage as
normalizing factor. Considering we design the RF system to provide the ADC with a
dynamic range of 1.5 times the nominal cavity voltage as an example:

VNoise,norm =
VNoise(V )

Vnom(V )
=
VNoise(V )

VADC(V )
× VADC(V )

Vnom(V )
= 1.5×

√
PNoise(V 2)

PADC(V 2)
(3.29)

where:

VNoise,norm = LLRF noise voltage in normalized units,

Vnom(V ) = Nominal cavity voltage in Volts and

VADC(V ) = Full range of the ADC in Volts.

Combining Eq. 3.28 and 3.25, we find:

PNoise(V
2)

PADC(V 2)
= 10

NoiseLLRF(dBc)

10 = 10
PSDLLRF(dBc/Hz)

10 ×B (3.30)
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and substituting Eq. 3.30 into 3.29, and defining Vrms,norm as the root-mean-square noise
component added to normalized cavity voltage, we get:

Vrms,norm = 1.5 ·
√

PSDLLRF ·B (3.31)

The above discussion is valid for baseband signals, but LLRF systems digitize the signal
around a carrier frequency, typically using I/Q or near-I/Q sampling of the measured
cavity voltages. When sampled at 90◦, the ADC produces a stream of I,Q,−I,−Q samples,
which gets repeated over and over again. We therefore get a stream of I and Q samples
respectively at half the total rate. Eq. (3.31) gives us the noise in one sample as a function
of the bandwidth. In order to find the noise of the I and Q samples respectively we need
to divide the total bandwidth by a factor of two. Considering B in Eq. (3.31) the total
bandwidth, we get an identical noise level for both I and Q samples:

Irms,norm = Qrms,norm =
1√
2
· Vrms,norm (3.32)

This relationship is also valid for near-I/Q sampling after the DSP converts raw ADC
samples to digital I and Q.

Now that we have the noise in the I and Q components of the measured cavity voltage,
we can calculate the contribution of LLRF noise to both amplitude (Arms) and phase (Φrms)
errors. The general case is a nonlinear transformation that depends on the instantaneous
value of the cavity field. For small amounts of noise around an equilibrium set-point, which
is unity in our normalized treatment, the results simplify to

Arms,norm = Irms,norm (3.33)

Φrms,rad = Qrms,norm (3.34)

Let us now calculate the expected noise levels in both amplitude and phase when using
a LLRF4 system (PSDLLRF = −135 dBc/Hz) and a 1µs simulation step (B=500 kHz).
Combining Eq. (3.31) and 3.32, we get:

Irms,norm = Qrms,norm = 1.5 ·
√

1

2
· 10−13.5 · 500× 103 = 1.334× 10−4 (3.35)

which can then be approximated to amplitude and phase errors using Eq. (3.33) and (3.34),
where the amplitude error is expressed in normalized units (normalizing factor being the
nominal cavity voltage), and the phase error is expressed in radians.

3.6 Simulation results

The combination of the RF station components (see Fig. 3.1) is integrated in a software
module and simulated. The result is shown in Fig. 3.13, where the signals typically available
in LLRF systems (forward, cavity and reverse) are shown, along with the cavity set-point
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Figure 3.13: RF Station test. Closed-loop RF system where cavity is filled and the field
stabilizes at the set-point value as controlled by the FPGA controller.

for reference. The cavity starts with no stored energy at the beginning of the simulation
and the cavity field builds up following its time constant. During the cavity fill-up time,
the RF drive signal is saturated and the system effectively behaves as open-loop. Once the
cavity field reaches a certain value, the RF controller reacts and reduces the drive signal to
stabilize the cavity field around the set-point. Note the presence of noise in the different
digitized signals, scaled as described in Section 3.5.
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Figure 4.1: Cryomodule block diagram.

4 Cryomodule

The cryomodule model shown in Fig. 4.1 includes a configurable number of RF station
instances (described in detail in Section 3), as well as cavity-to-cavity interactions through
mechanical couplings. Here we describe the state-space model representing the dynamics
of the mechanical resonances (also, as in the case of the electrical modes in a cavity, decom-
posed into eigenmodes) as well as the interactions between these mechanical eigenmodes
and the cavity electrical eigenmodes (through Lorentz forces), piezos and tuners.

4.1 Electro-mechanical interactions

The presence of an EM field inside the cavity generates forces on the cavity walls,
resulting in deformation of the cavity and subsequently in a shift of the cavity resonance
frequency [9], designated in Section 3 as detune frequency ωdµ . Each mode’s fields generate

a force proportional to V 2
µ = |~Vµ|2, and mechanical displacements influence each mode’s

instantaneous detune frequency. Construct ωd in Section 3 as a baseline ωd0 from the
electrical mode solution (e.g., −2π(800 kHz) for the TTF cavity’s 8π/9 mode), plus a
perturbation ωµ contributed from the mechanical mode deflections.

Consider the electrical mode index µ to include not only electrical eigenmodes of one
cavity, but modes of all cavities in the mechanical assembly (e.g., cryomodule). Also
include the dependence on piezoelectric actuator voltages Vκ. Then if the assembly’s
mechanical eigenmodes are indexed by ν, mechanical forces Fν and displacements xν of
those eigenmodes are related to the electrical system by

Fν =
∑
µ

AνµV
2
µ +

∑
κ

BνκVκ (4.1)

ωµ =
∑
ν

Cµνxν , (4.2)

where A, B, and C are constant matrices.
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Figure 4.2: Electro-mechanical coupling block diagram.

These matrix calculations are represented in Fig. 4.2. Note that in the same way
any electrical eigenmode can be coupled to any mechanical eigenmode, one can configure
the matrix to define couplings only present for intra-cavity interactions. In Section 3 we
described in detail how to solve for the accelerating voltages for each electrical mode inde-
pendently, and the translation between Lorentz forces (Fν) and mechanical displacements
(xν) is represented by the state-space model of the mechanical eigenmode described next.

4.1.1 Mechanical Eigenmodes

Equations 4.1 and 4.2 are understood to apply at every time instant; the quantities V ,
F , x, and ω all vary with time. The differential equation governing the dynamics of each
mechanical eigenmode is that of a textbook second order low-pass filter. In Laplace form,

kνxν =
Fν

1 +
1

Qν

s

ων
+

(
s

ων

)2 , (4.3)

where kν is the spring constant. For computational purposes, we want it expressed in terms
of the state-space formulation

d

dt

(
xν
yν

)
=

(
aν −bν
bν aν

)(
xν
yν

)
+ cν

(
0
Fν

)
(4.4)
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where a scaled velocity coordinate yν has been introduced. Convert the latter equation to
Laplace form and solve to get(

xν
yν

)
=

(
aν − s −bν
bν aν − s

)−1

·
(

0
Fν

)
(4.5)

Analytically invert that 2× 2 matrix, and multiply out to get

xν =
−bνcνFν

(aν − s)2 + b2
ν

. (4.6)

Equate coefficients with the earlier low-pass filter form, in the case Q > 1
2
, to get

aν ± jbν = ων

(
−1

2Qν

± j

√
1− 1

4Q2
ν

)
(4.7)

cν = − 1

kν
· a

2
ν + b2

ν

bν
= − ω2

ν

kνbν
. (4.8)

A deeper understanding of the forces and responses of a single electrical eigenmode
µ of the cavity comes from Slater’s perturbation theory. For an eigenmode solution
~Hµ(~r) sin(ω0µt), ~Eµ(~r) cos(ω0µt) to Maxwell’s equations in a closed conducting cavity (vol-
ume V ), the stored energy Uµ is given by

Uµ =

∫
V

[µ0

4
H2
µ(~r) +

ε0

4
E2
µ(~r)

]
dv . (4.9)

Suppose a mechanical eigenmode ν involves small deflections xν · ~ξ(~r), where xν gives
the amount of deflection, and the dimensionless quantity ξ(~r) represents the mode shape.
Both the force on the mode and the response to a deflection xν are given in terms of the
Slater integral

Fµ =

∫
S

[µ0

4
H2(~r)− ε0

4
E2(~r)

]
~n(~r) · ~ξ(~r)dS , (4.10)

where ~n(~r) is the normal vector to the cavity surface S, and Fµ directly gives the force.
Note in particular the subtraction of E and H terms, contrasted with the addition in
the energy integral. Also notice the dot product of the deflection shape with the surface
normal. Then

∆ωµ = −xνω0µ

(
F

U

)
µ

(4.11)

and

Fµ =

(
F

U

)
µ

· 1

(R/Q)µω0µ

V 2
µ , (4.12)
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where (F/U)µ is a property of the electrical eigenmode, independent of amplitude, with

units of m−1. Thus

Aνµ =

(
F

U

)
µ

· 1

(R/Q)µω0µ

, (4.13)

and

Cµν = −ω0µ

(
F

U

)
µ

(4.14)

Slater’s analysis above lets us express the static Lorentz response as(
∆ω

V 2

)
νµ

=
CµνAνµ
kν

= −
(
F

U

)2

µ

· 1

kν(R/Q)µ
(4.15)

correctly showing that this constant is always negative: the mode’s static resonance fre-
quency gets lower as it is filled. Summing over all mechanical modes ν gives the total DC
response, often quoted in units of Hz/(MV/m)2.

Using electrical measurements alone, it’s not possible to constrain the scaling of xν . It
is therefore helpful to rescale xν and Fν each by a factor of

√
kν , and eliminate kν from

the equations. Instead of conventional units (m and N) for x and F , they now both have
units of

√
Joules, so that x · F still represents energy. In this rescaled no-k case,

Aνµ =
1

ω0µ

√
− 1

(R/Q)µ

(
∆ω

V 2

)
νµ

(4.16)

Cµν = −ω0µ

√
−(R/Q)µ

(
∆ω

V 2

)
νµ

. (4.17)

It is perhaps an unexpected result that the cross-coupling between cavity modes (e.g.,
excite the π mode, measure ∆ω for the 8π/9 mode) is quantitatively predicted from mea-
surements of each mode individually, with the exception of the choice of sign of the above
radicals. All that is required is confidence that mechanical modes are correctly identified
and non-degenerate.

4.1.2 Software implementation

The matrix calculations shown in Fig. 4.2 are applied every time step following equa-
tions 4.1 and 4.2. The box labeled “Mechanical Mode Dynamics, 2nd-order LPF” takes
Lorentz forces for each mechanical eigenmode as an input (Fν) and produces a mechanical
displacement (xν). This corresponds to Eq. 4.4, the state-space formulation of the 2nd-
order low-pass filter. Expanding that equation in matrix form, two expressions appear:

dxν
dt

= aνxν − bνyν , (4.18)
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and

dyν
dt

= bνxν + aνyν + cνFν (4.19)

where:

aν =
−ων
2Qν

(4.20)

bν = ων

√
1− 1

4Q2
ν

(4.21)

cν = − ων
kνbν

(4.22)

These displacements influence each electrical mode’s instantaneous eigenmode frequency
ωµ as follows:

ωµ =
∑
ν

Cµνxν (4.23)

where C is the coupling matrix from mechanics to EM.
In order to discretize this equation, we will use the superscript n to indicate the current

time iteration. Hence the following time step is superscripted by n + 1. We can thereby
approximate a time derivative of a variable A in the following fashion:

dA

dt
≈ An+1 − An

T
(4.24)

where T is the time step size (usually expressed as ∆t).
Discretizing Equations 4.18 and 4.19, we find:

xn+1
ν = xnν + T (axnν − bynν ) = xnν (1 + Taν)− Tbνynν (4.25)

yn+1
ν = ynν + T (bxnν + aynν + cF n

ν ) = ynν (1 + Taν) + T (bνx
n + cF n

ν ) (4.26)

At this point we have covered the mechanical state-space model physics and software
implementation, as well as the electro-mechanical interactions. We have then all the ele-
ments needed in order to perform time-series simulation runs and some results are presented
next.

4.2 Simulation results

We showed in Section 3.1.3 the proper behavior of the cavity model in the presence of a
frequency perturbation. Here we propose a simple exercise where one electrical eigenmode
(π-mode) interacts with one mechanical eigenmode following the equations described above.

February 23, 2017 LCLSII-TN-17-06 27



LCLS-II TECHNICAL NOTE

Figure 4.3: Cryomodule test. Step response of the cavity field in the presence of Lorentz
forces.

Figure 4.4: Cryomodule test. Lorentz force detune frequency as a function of time, along
with the square of the cavity voltage multiplied by the Lorentz coupling coefficient kL in
Hz/V 2.
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Figure 4.5: Cavity voltage in the complex plane.

In this exercise, the RF controller is configured in open-loop mode, where the cavity
is driven by a constant signal of 30

√
W . Fig. 4.3 shows the cavity signals. As the cavity

fills up, Lorentz forces start shifting the mode’s frequency and as a result the π-mode
accelerating field (~Vµ) starts decreasing, where the opposite effect can be observed on the

reverse field ( ~Ereverse).
Fig. 4.4 shows the detune frequency in more detail. The frequency shift is proportional

to the square of the voltage and the two are related by the Lorentz coupling (kL in the
figure, which has units of Hz/V2). The green curve shows the actual frequency shift, where
the dynamics of the mechanical eigenmode are taken into account (see the block diagram
in Fig. 4.2). Note the negative sign on the frequency shift curve, introduced in order to
facilitate the plotting of the two curves side-by-side, and showing that the frequency shifts
in the right direction according to equations 4.11 and 4.12 derived above.

Fig. 4.5 shows the cavity signals in the complex plane, where one can observe the cavity
voltage start rising on tune (along the real axis) and curve into the imaginary plane as the
energy in the cavity builds up. All signals are in units of Volts and their relationship is
indicated in Eq. 3.8.

At this point of this discussion we have completely defined the state-space model of
the RF system, along with electro-mechanical interactions within a cryomodule. The rest
of this discussions describes how the cryomodule elements are replicated and connected in
order to form first a Linac section and finally an accelerator, including interactions with
the Linac longitudinal beam dynamics model and beam-based feedback.
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Figure 5.1: Linac block diagram.

5 Accelerator Model

So far we have covered all the dynamics involved in the control of the accelerating volt-
ages, including the RF feedback loop as well as the cavity dynamics and electro-mechanical
interactions through Lorentz forces. The accelerator model integrates an array cryomod-
ules to form a Linac section (see Fig. 5.1), and an array of Linac sections to form an
accelerator.

Combining the Linac state-space models along with a model representing the longitu-
dinal dynamics as the beam propagates through the Linac, we can calculate the effects of
different noise sources in the system (both correlated and uncorrelated) on beam figures
of merit such as energy stability, bunch length, peak current, timing stability, etc. These
quantities can be measured and used in order to apply corrections on the RF amplitude
and phase set-points. The longitudinal beam dynamics model, along with the beam-based
feedback scheme are described next.

5.1 Longitudinal beam dynamics model

The longitudinal beam dynamics model used here is called doublecompress and is a
simplification of the more complete Linear Tracking simulator (LiTrack [2]). The simplified
version used here serves well the purposes of an integrated simulation with the state-space
models, and emulates a macro-particle including up to second order effects 1.

The accelerator is composed of a series of Linac and bunch compressor sections, where
the phase-space model tracks the macro-particle as it propagates from one section to the
next. For each Linac section, doublecompress calculates the quantities shown in Fig. 5.2,
where the subscript n refers to the Linac position in the Accelerator2.

When a single particle has an energy offset δn−1 and position offset zn−1, and goes
through a cavity followed by a bunch compressor (say in Linac n), the new energy offset
varies as:

δn = δn−1Er + knzn−1 (5.1)

1The equations depicted here have been extracted literally from a presentation by Paul Emma in 2000
titled LCLS Linac Design Auto-Optimization with S&X-Band RF.

2Note the difference in notation with respect to Sections 3 and 4, where n denoted simulation time
step.
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Figure 5.2: doublecompress block diagram.There is a slight simplification in the notation
used in the figure, which is slightly different from the definitions in this section. R56 really
refers to R′56n and k really refers to kn.

where:

Er =
En−1

En
(5.2)

and kn is the linear correlation factor for the n-th Linac in the accelerator (in units of
m−1):

kn = (kr)n + (kw)n (1 + ∆N/N) (5.3)

which is composed of a wakefield (kw)n and an RF phase induced term (kr)n:

(kw)n ≡ −
2Ne2cZ0s0nLn
πa2

n∆z2
nEn

[
1− (1 +

√
∆zn/s0n)e−

√
∆zn/s0n

]
(5.4)

(kr)n =
2π

λn

(
En−1

En
− 1

)
sin(ϕn + ∆ϕn + 2πc∆tn−1/λn)

cosϕn
(5.5)

If in the n-th Linac there is a dispersive section (R56n 6= 0), the perturbed R56 (R′56) is:

R′56n = R56n + T566n

(
∆E

E

)
n

(5.6)

where T566n = −1.5 × R56n , and the position offset after the particle goes through the
chicane varies as:

zn = zn−1 +R′56δn (5.7)
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Variable Description Units

N bunch population electrons
e charge of the electron C
c speed of light m/s
Z0 impedance of free space Ω
s0 wakefield characteristic length (S-band = 1.322 mm) m

∆N/N bunch population relative error unitless
a Mean iris radius (S-band = 11.654 mm) m

∆z bunch length m
L Linac length (scales wakefield) m

Table 5.1: doublecompress configuration parameters and constants.

In the case of N particles, we follow same formulation:

σ2
zn = 〈z2

n〉 =
(
1 + knR

′
56n

)2
σ2
zn−1

+

(
R′56nσδn−1

En−1

En

)2

+ 2
(
1 + knR

′
56n

)
R′56n

En−1

En
〈zn−1δn−1〉 (5.8)

The same generalization applies to the RMS energy spread as it goes through the acceler-
ating section:

σ2
δn = 〈δ2

n〉 = k2
nσ

2
zn−1

+

(
σδn−1

En−1

En

)2

+ 2kn
En−1

En
〈zn−1δn−1〉 (5.9)

And the z − δ correlation is:

〈znδn〉 =
(
1 + knR

′
56n

)
knσ

2
zn−1

+R′56n

(
σδn−1

En−1

En

)2

+
(
1 + 2knR

′
56n

) En−1

En
〈zn−1δn−1〉 (5.10)

where the different variables are defined in Table 5.1. This can be expressed in matrix
form as:

 σ2
δn

σ2
zn

〈znδn〉

 =

 E2
r k2

n 2knEr
R′256nE

2
r R′256k

2
n + 2R′56nkn + 1 2R′256nknEr + 2R′56nEr

R′56nE
2
r R′56nk

2
n + kn 2R′56nknEr + Er

 ∗
 σ2

δn−1

σ2
zn−1

〈zn−1δn−1〉


(5.11)
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The transformation matrix can be separated into the contribution of the cavity and the
chicane if we create an abstract intermediate state, where a particle has energy δn while
still at position zn−1. We then get:

Mcavityn =

E2
r k2

n 2 knEr
0 1 0
0 kn Er

 (5.12)

and

Mchicanen =

 1 0 0
R′256n 1 2R′56n

R′56n 0 1

 (5.13)

If we multiply out these two matrices, we get the same transformation matrix as in Eq. 5.11:

Mcavityn ·Mchicanen =

 E2
r k2

n 2 knEr
R′256n E

2
r R′256n k

2
n + 2R′56n kn + 1 2R′256n knEr + 2R′56n Er

R′56n E
2
r R′56n k

2
n + k 2R′56n knEr + Er

 (5.14)

If we cascade two cavities, we get the following response matrix:

E2
r,2 k2

2 2 k2Er,2
0 1 0
0 k2 Er,2

 ∗
E2

r,1 k2
1 2 k1Er,1

0 1 0
0 k1 Er,1


=

E2
r,1E

2
r,2 k2

1 E
2
r,2 + 2 k1 k2Er,2 + k2

2 2 k1Er,1E
2
r,2 + 2 k2Er,1Er,2

0 1 0
0 k1Er,2 + k2 Er,1Er,2

 (5.15)

which has the same form as a single cavity, where Er = Er,1 ∗ Er,2, and k = k1Er,2 + k2.
Another figure of merit calculated by doublecompress is the the mean energy deviation,

which is expressed as:

(
∆E

E

)
n

=
En−1

En

(
∆E

E

)
n−1

− ∆N

N

∆Eloadn
En

+

(
1− En−1

En

)[
cos(ϕn + ∆ϕn + 2πc∆tn−1/λn)

cosϕn
− 1

]
(5.16)

where ϕn is the nominal Linac RF phase for the n-th Linac (e.g -30 deg accelerates and
puts head energy lower than tail), ∆ϕn is the RF phase error (deduced from the RF system
state-space models), ∆tn is the timing error in seconds, λn is the RF wavelength in meters,
c is the speed of light in m/s, and the wakefield loading term is defined as:

∆Eloadn ≈
1

2
En∆zn(kw)n (5.17)
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Noise Source Description Units

∆σz RMS bunch length error m
∆σδ Deviation of energy spread from nominal energy spread unitless 3

∆N/N Relative bunch population error unitless 4

∆tg Gun timing error s
∆Einj Energy deviation at end of the injector eV
〈zδ〉 Initial z − δ correlation m

(∆V/V )n Relative RF Amplitude error unitless 5

∆ϕn RF phase error degrees

Table 5.2: doublecompress noise sources.

Finally, the timing error is calculated:

∆tn = ∆tn−1 +
1

c

(
∆E

E

)
n

R′56n (5.18)

All of these quantities are calculated every time step including time varying noise
sources and the effects of errors on the RF amplitude and phase. These quantities then
have the potential to be injected in a beam-based feedback system where amplitude and
phase set-points in the RF stations can be modulated in order to minimize for longitudinal
errors. The different correlated noise sources included in the model are described next.

5.2 Correlated Noise sources

The calculation of the different accelerator figures of merit, shown in the equations
above, are performed in a per-Linac section basis and the value of each quantity is depen-
dent of the same quantity in the preceding Linac section. The initial conditions for these
errors (i.e. the previous value of each quantity for the first Linac section) corresponds to
a characterization of the injector. In practical terms, these noise sources can either be
deduced from a list of requirements for the injector, non-relativistic simulations, or from
measurements if available. The noise inputs to the doublecompress model are summarized
in Table 5.2. They all correspond to a noise characterization of the injector except for the
last two entries in the table ((∆V/V )n and ∆ϕn) which correspond to the RF amplitude
and phase errors in each Linac individually (note the subscript n).

As shown in Fig. 5.3, the interaction with the state-space models of the RF system and
the longitudinal beam dynamics is then performed in two ways. Firstly by injecting the
RF amplitude and phase errors into the equations shown above, and secondly by means

3Fraction relative to the Energy at the end of the Injector.
4Fraction relative to the nominal bunch population.
5Fraction relative to the nominal RF amplitude in Volts.
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Figure 5.3: Block diagram of the interaction between the RF system model and Beam
Longitudinal Dynamics via Beam-based feedback and introduction of cavity amplitude
and phase errors into doublecompress.

of beam-based feedback, where RF amplitude and phase set-points can be modulated in
order to minimize for the errors described above.
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Figure A.1: Comparison between numerical and analytical filter step response.

A Appendix

A.1 ODE Integration of single-pole low-pass filter

Start with the first order differential equation for a single-pole low pass filter. Its
transfer function is expressed in Laplace form as

TF (s) =
~Vout(s)

~Vin(s)
=

1

s− p
(A.1)

where ~Vin and ~Vout are the input and output signals, and p is the pole location. Make the
differentiation explicit, and rearrange to get a form consistent with state-variable numerical
ODE integration,

d~Vout(t)

dt
= ~Vin(t) + p · ~Vout(t) (A.2)

The simplest expression for a ’next’ value at step n in a discrete time ansatz is

~V n
out = (1 + ∆t · p) ~V n−1

out + ∆t · V n
in (A.3)

To improve convergence properties in the case where ∆t · p is not tiny, approximate the
trajectory of ~Vin and ~Vout as linear within a single time step. Specifically, assume that ~Vout

changes from ~V n−1
out to ~V n

out, and ~Vin changes from ~V n−1
in to ~V n

in .
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Using what is essentially the Trapezoidal Formula [10], our rendition of the discrete
time approximation to the above differential equation becomes

~V n
out = a · ~V n−1

out +
1

2
· b · (~V n−1

in + ~V n
in) (A.4)

where a =
1 + 1

2
∆t · p

1− 1
2
∆t · p

, and b =
∆t

1− 1
2
∆t · p

∆t is the simulation step duration, and p is the pole location (a complex number). Cavity
detuning is represented by a slight pole shifting into the imaginary direction.

In order to preserve scaling and have unity gain at DC, Eq. A.2 needs to be scaled by
a factor of p, such that

d~Vout(t)

dt
= p · ~Vin(t) + p · ~Vout(t) (A.5)

which is equivalent to scaling ~V n
out by a factor of |p| in the software implementation.

This process is coded in C, and tested using a two-pole ow pass Butterworth filter.
Given the transfer function 1/((s + 1)2 + 1), which has poles at (-1+1j) and (-1-1j), the
step response is 1−e−t(sinx+cosx), for t > 0. This analytically known response is plotted
in Fig. A.1 along with the response obtained using the numerical model.

February 23, 2017 LCLSII-TN-17-06 37



LCLS-II TECHNICAL NOTE

References

[1] M. Mellado Munoz, L. Doolittle, P. Emma, G. Huang, A. Ratti, C. Serrano, J. M.
Byrd, “A Dynamic feedback model for high repetition rate LINAC-Driver FELs,”
IPAC’12, New Orleans, LA, May 2012.

[2] P. Emma, K. Bane, L. Freitag, “LiTrack : A Fast longitudinal phase space tracking
code with graphical user interface”, PAC’05, Knoxville, TN, May 2005.

[3] Wangler, Thomas P, “Principles of RF linear accelerators”, Wiley, NY, 1998.

[4] Poisson Superfish Software, http://laacg.lanl.gov/laacg/services/download_

sf.phtml

[5] C. G. Montgomery, R. H. Dicke. E. M Purcell, “Principles of Microwave Circuits”,
MIT Radiation Lab Series V8, 1947.

[6] L. R. Doolittle, “Understanding 5-cell mode structures”, JLab tech note CEBAF-TN-
0120, May 1989.

[7] Slowly varying envelope approximation (SVEA), http://en.wikipedia.org/wiki/
Slowly_varying_envelope_approximation.

[8] T. Schilcher, “Vector Sum Control of Pulsed Accelerating Fields in Lorentz Force
Detuned Superconducting Cavities”, Hamburg 1998.

[9] J. R. Delayen, “Ponderomotive Instabilities and Microphonics – A Tutorial”, SRF’05,
Ithaca, NY, July 2005.

[10] Abramowitz and Stegun, “Handbook of Mathematical Functions”, Formula 25.5.3,
1964.

February 23, 2017 LCLSII-TN-17-06 38

http://laacg.lanl.gov/laacg/services/download_sf.phtml
http://laacg.lanl.gov/laacg/services/download_sf.phtml
http://en.wikipedia.org/wiki/Slowly_varying_envelope_approximation
http://en.wikipedia.org/wiki/Slowly_varying_envelope_approximation

	Overview
	Model hierarchy
	RF Station
	Cavity model
	FPGA Controller
	RF Amplifier
	Phase Shifter
	LLRF Noise
	Simulation results

	Cryomodule
	Electro-mechanical interactions
	Simulation results

	Accelerator Model
	Longitudinal beam dynamics model
	Correlated Noise sources

	Appendix
	ODE Integration of single-pole low-pass filter


