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Abstract

We have performed Joule power loss calculations for a flat dechirper. We have consid-

ered the configurations of the beam on-axis between the two plates—for chirp control—and

for the beam especially close to one plate—for use as a fast kicker. Our calculations use a

surface impedance approach, one that is valid when corrugation parameters are small com-

pared to aperture (the perturbative parameter regime). In our model we ignore effects of

field reflections at the sides of the dechirper plates, and thus expect the results to underes-

timate the Joule losses. The analytical results were also tested by numerical, time-domain

simulations. We find that most of the wake power lost by the beam is radiated out to the

sides of the plates. For the case of the beam passing by a single plate, we derive an analyt-

ical expression for the broad-band impedance, and—in Appendix B—numerically confirm

recently developed, analytical formulas for the short-range wakes. While our theory can

be applied to the LCLS-II dechirper with large gaps, for the nominal apertures we are not

in the perturbative regime and the reflection contribution to Joule losses is not negligible.

With input from computer simulations, we estimate the Joule power loss (assuming bunch

charge of 300 pC, repetition rate of 100 kHz) is 21 W/m for the case of two plates, and

24 W/m for the case of a single plate.
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INTRODUCTION

A corrugated structure device–a so-called dechirper [1]–is being proposed for

installation after the end of the linac and before the undulator regions of LCLS-II.

Such a device has been installed in LCLS-I [2], where it has been used for energy

chirp control and as a fast kicker for self-seeding and two color operation of the

FEL [3]. Because of the high repetition rate in LCLS-II compared to LCLS-I, Joule

heating of the device by the beam’s wakefields may now become significant and a

cooling system may be required. Thus, it is important to estimate the amount of

Joule heating power that is deposited in the corrugated plates.

In previous work, the surface impedance approach to obtaining the impedances

and wakes of a short, high energy bunch in a flat dechirper was derived [4–6].

The resulting formulas were shown to be approximate and valid in the perturbative

regime, i.e. when h/a � 1, with h the corrugation depth and a the half aperture

of the dechirper. In this regime (assuming also that h/p & 1, with p the corruga-

tion period) the impedance can be described by a single mode and the longitudinal

wake by a damped cosine function [7]. The RadiaBeam/SLAC dechirper at nomi-

nal parameters (h = 0.5 mm and a = 0.7 mm, thus h/a = 0.7), however, is not in

the perturbative regime. In this non-perturbative regime, it has been shown that the

impedance consists of more than one mode [8] and the wake begins with a droop [9].

However, even for this regime analytical fitting functions for the short-range wakes

have been derived and also verified by numerical simulation [10].

In previous work on the dechirper, the effect of the corrugations alone was con-

sidered, and the effect of the resistance of the boundary metal was ignored. For

Joule power loss calculations, however, one needs to include both contributions.

Also, in most of the previous work on the impedance of a flat dechirper, the case of

the beam passing between two corrugated plates was considered. However, when

used as a fast kicker, with the beam passing close to one plate, the second plate
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no longer influences the beam nor needs to be in the problem. Note however, that

analytical fitting formulas for the short-range wakes for this case have also been

recently derived [11], though without numerical verification.

In the present report, by applying the surface impedance approach to both dou-

ble and single plate dechirpers, we obtain analytical estimates of the Joule heating

power. The surface impedance approach is used where it is not quite applicable

(h/a = 0.7 and is not small), introducing an error. In addition, our estimates ignore

the effect of reflections from the side edges of the dechirper plates. We thus expect

our results to underestimate the Joule power losses. Finally, we test the accuracy

of these calculations, by performing numerical simulations using the time-domain

Maxwell equation solver in CST Particle Studio (PS) [12], and also (for verifi-

cation purposes) with the program PBCI [13]. These calculations are themselves

quite challenging, since a fine mesh is needed to resolve the short bunch, and runs

need to be performed over a large mesh domain for a relatively long time. In Ap-

pendix B we perform numerical simulations to test the accuracy of the single plate,

short-range wake formulas derived in [11].

The RadiaBeam/SLAC dechirper that is installed in LCLS-I consists of two

modules. Each module has two corrugated plates, with the beam passing between

them (see Fig. 1). Two modules were chosen in order to partially cancel the un-

avoidable quadrupole wakefield that is induced by the beam; one has plates parallel

to the x-z axis (horizontal-longitudinal) plane and is adjustable vertically (the “verti-

cal dechirper"), and the complimentary one is adjustable horizontally (the “horizon-

tal dechirper"). For LCLS-II, the corrugation parameters are period p = 0.5 mm,

(longitudinal) gap t = 0.25 mm, depth h = 0.5 mm; nominally the gap g = 2a =

1.4 mm. The plate length L = 1.5 m and width w = 12 mm. Our calculations

here consider: (i) a vertical two-plate dechirper, with the beam on the symmetry

axis (such as is shown in Fig. 1); and (ii) only the top plate, with the beam just

below it. The dechirper parameters and typical beam and machine properties used
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in calculations here are given in Table I.
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h

FIG. 1. Three corrugations of a vertical dechirper. A rectangular coordinate system is

centered on the symmetry axis of the chamber. The blue ellipse represents an electron

beam propagating along the z axis.

The equations in this report are given in cgs units. To convert an impedance or

wake into MKS units, one multiplies the cgs result by Z0c/(4π), with Z0 = 377 Ω.

JOULE HEATING ESTIMATES

In a round corrugated structure of a finite length (a dechirper), the wakefield en-

ergy loss experienced by a relativistic beam of charged particles is partly absorbed

in the walls as Joule heating and partly generates a THz pulse that leaves the struc-

ture just behind the driving particle. In the flat geometry of dechirpers like those

that have actually been built—like the RadiaBeam/LCLS dechirper—some of that

energy can also escape through the aperture to the side. The energy per unit length

lost by the beam to the wake is then given by the sum

uw = uh + (urad)z + (urad)x , (1)
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TABLE I. Selected beam and machine properties for LCLS-II used in example calculations.

This is the high charge option with its maximum repetition rate. The charge distribution is

assumed to be uniform with peak current I = 1.5 kA. The dechirper properties are those

of the RadiaBeam/LSLAC dechirper, which consists of two modules, each with corrugated

plates of length L = 1.5 m. The plates are made of aluminum; we take conductivity σc =

3.2 × 1017/s.

Parameter name Value Unit

Beam energy, E 6 GeV

Charge per bunch, Q 300 pC

Full bunch length, ` 60 µm

Repetition Rate, frep 100 kHz

Dechirper properties:

Period, p 0.5 mm

Longitudinal gap, t 0.25 mm

Full depth, h 0.5 mm

Nominal half aperture, a 0.7 mm

Plate width, w 12 mm

Plate length, L 2 m

with uh the energy generating Joule heating in the metal walls, (urad)z the energy in

the THz pulse that leaves the end of the structure following the driving particle, and

(urad)x the energy radiating out the sides of the structure.

A particle of charge Q moves at the speed of light c on the axis of a structure.

The Joule energy loss into the walls per unit length is given by

uh =
1
c

∫
B

S(r, z) · dA , (2)

with S the Poynting vector, dA the incremental surface area vector (into the wall
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is positive), and B represents the metallic boundary. The calculation is performed

at time t = 0 when the particle is at z = 0, and the transverse coordinate is r. The

particle is assumed to be moving to the left; the fields are zero ahead of the particle

(for z < 0).

Let us begin by sketching how we would solve the case of a dechirper with round

geometry. The walls are located at radius r = a, and the Poynting vector at the walls

is given by S = −( c
4π )EzHφ, with Ez(r, z) the longitudinal component of the electric

field and Hφ(r, z) the azimuthal component of the magnetic field. The Joule energy

loss into the walls becomes

uh =
a
2

∫ ∞

−∞

dz Ez(a, z)Hφ(a, z) . (3)

The fields can be written in terms of their Fourier transforms; for example, for the

electric field

Ẽz(ω) =
1
c

∫ ∞

0
dz Ez(z)eiωz/c , Ez(z) =

1
2π

∫ ∞

−∞

dω Ẽz(ω)e−iωz/c , (4)

where ω is the frequency and a tilde indicates the Fourier transform of a field (and

similarly for Hφ). Substituting into Eq. 3 and changing the order of integrations we

obtain

uh =
a

8π2

∫ ∞

−∞

dω Ẽz(ω)
∫ ∞

−∞

dω′ H̃φ(ω′)
∫ ∞

−∞

dz e−i(ω+ω′)z/c . (5)

The last integral on the right equals 2πcδ(ω + ω′). Thus, we obtain

uh =
ca
4π

∫ ∞

−∞

dω Ẽz(ω)H̃φ(−ω) =
ca
4π

∫ ∞

−∞

dω Ẽz(ω)H̃φ(ω)∗ , (6)

where in the last integral ∗ indicates the complex conjugate of a function. To obtain

the last integral we used the relation H̃φ(−ω) = H̃φ(ω)∗; such a relation holds for

the fields in the frequency domain, since the same fields in the time domain must

be real quantities.

On the metallic surface we have the relation

Ẽz(ω) = ζz(ω)H̃φ(ω) , (7)
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with ζz(ω) the surface impedance of the structure walls, which includes both the

contributions of the corrugations and the wall resistance (the subscript z indicates

that the surface currents move in the longitudinal direction). Substituting into Eq. 6,

and noting the symmetry of the integrand, we finally obtain

uh =
ca
2π

∫ ∞

0
dωRe[ζz(ω)]|H̃φ(a, ω)|2 . (8)

If we write the Joule loss as uh =
∫ ∞
−∞

dũ
dωdω, then we can define an effective Joule

heating impedance Zh(ω), which has a real part defined as

Re(Zh(ω)) =
π

Q2

dũ
dω

(ω) . (9)

In this round example it turns out that all the wake losses end up in the walls, since

they have nowhere else to go. It is easy to see that Zh(ω) = Z(ω), with Z(ω) the

normally defined impedance of the corrugated structure, given by Z(ω) = −Ẽz/Q.

For a bunch of particles, the Joule heating energy is given by

uhλ =
1
π

∫ ∞

0
dω |Ĩ(ω)|2Re(Zh(ω)) , (10)

with Ĩ(ω) the Fourier transform of the current, I(z) = Qcλ(z), and λ(z) the longitu-

dinal bunch distribution. However, in following energy and power calculations we

will let |Ĩ(ω)|2 → 1, since for the small bunch lengths considered and the frequency

reach of the dechirper impedance, this approximation is good.

The Joule power loss is simply given by P = uh frep, with frep the bunch repeti-

tion rate. However, we need to make one more adjustment. In the round case, since

all the beam energy loss becomes Joule heating, we obtain uh = 2Q2/a2. How-

ever, our Joule energy loss calculations are perturbative calculations. Since in our

calculations the corrugation parameter ratio (h/a) is not small we are not in the per-

turbative regime and there will be wake droop. To better estimate the Joule power

loss we take

P = frepuh

[
κ(σz)
κ(0)

]
, (11)
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with κ(σz) the loss factor of a Gaussian bunch of length σz. The point charge loss

factor κ(0) = 2/a2 (with a the pipe radius) in the round case, and κ(0) = π2/(8a2)

(with a the half aperture) in the flat case. The loss factor κ(σz) includes the effect

of the wake droop.

FLAT GEOMETRY

In flat geometry energy can also radiate out the sides. To obtain our Joule heating

estimate we perform a simple approximate calculation. End on, a vertical dechirper

looks like what is shown in the sketch of Fig. 2a. The vertical gap is 2a and the

width of the corrugated plates is w. For our calculations we let the width of the

plates become infinite, and to account for the finite width as in the real case, we

perform Joule loss calculations over the boundary only over a region of width ±w/2

from the beam path (see Fig. 2b; the distance between the dashed lines is meant to

be w). In addition, we use a perturbation calculation that is only accurate when the

corrugation parameters are small compared to the aperture 2a. For the parameters

of Table I we see that this is not true, so we will lose accuracy here, too. The final

contributor to inaccuracy is that the perturbation calculation assumes that the struc-

ture is infinitely long, which does not allow for part of the wake loss to contribute

to the generation of a THz pulse in the z direction. However, this final contribution

can be shown to be small for the parameters of Table I.

Let us consider a vertical dechirper with plate walls of width w located at y = ±a

with respect to the axis. The Poynting vector at the walls

S =

( c
4π

)
(ExHz − EzHx) . (12)

Note that in this case, in addition to a surface current in the z direction, correspond-

ing to the surface impedance ζz, there is a surface impedance in the x direction,

corresponding to surface impedance ζx. The surface impedance in the z direction is
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FIG. 2. Sketch of a vertical set of dechirper jaws seen end on: (a) in the real geometry the

jaws have a finite width w; (b) in the model used in the calculation, the width is infinite, but

the loss integration is performed only over a width w (represented by the distance between

the dashed lines). The purple lines represent the corrugated surfaces; the blue ellipses, the

exciting particle’s transverse location.

given by the sum of the resistive wall and the corrugation impedance contributions,

ζz = ζrw + ζcorr, with [16], [4],

ζrw(ω) =

(
ω

8πσc

)1/2

(1 − i) , ζcorr(ω) = −i
hω
2c

, (13)

and σc is the conductivity of the metal walls. In the x direction, we take the surface

impedance to be ζx = ζrw, since the horizontal surface currents are not impeded by

the corrugations. Note that an anisotropic surface impedance was not used before

for modeling the impedance of the corrugated structure; this form, however, is im-

portant in our application here. Note also that with only corrugations and no wall

resistance, the Joule heating is zero.

The Joule wall energy loss per unit length becomes

uh =
1

2π

∫ w/2

−w/2
dx

∫ ∞

−∞

dz
[
Ez(x, a, z)Hx(x, a, z) + Ex(x, a, z)Hz(x, a, z)

]
(14)

(an overall factor of 2 is added because there are two plates). There are two con-

tributions. Let us take uh = uhz + uhx, with uhz the part that depends on EzHx at
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the walls; uhx the part that depends on ExHz at the walls. Following a calculation

similar to that for the round case above, we can rewrite the equation for uz in the

frequency domain as

uhz =
c

4π2

∫ w/2

−w/2
dx

∫ ∞

−∞

dωRe[ζ(ω)]|H̃x(x, a, ω)|2 . (15)

To perform the calculation, we follow the procedure described in Ref. [5], which

explicitly gives the fields and wakefields in structures with flat geometry for which

the effect at the boundaries can be approximated by a surface impedance. First the

frequency representation of the fields are Fourier transformed in x as:

Ĥx(q, y, ω) =

∫ ∞

−∞

dx H̃x(x, y, ω)eiqx , H̃x(x, y, ω) =
1

2π

∫ ∞

−∞

dq Ĥx(q, y, ω)e−iqx .

(16)

Substituting into Eq. 15, changing the order of integration, and noting the symmetry

of the integrand with respect to ω, we find that

uhz =
cw
8π4

∫ ∞

0
dωRe[ζz(ω)]

∫ ∞

−∞

dq Ĥx(q, a, ω)
∫ ∞

−∞

dq′ Ĥ∗x(q′, a, ω) sinc
[
w(q − q′)

2

]
.

(17)

It is this triple integral that we solve numerically to estimate the fraction of wake-

field losses that end up as Joule heating in the walls. Note that for the special case

width w→ ∞, the equation simplifies to

uhz =
c

2π3

∫ ∞

0
dωRe[ζz(ω)]

∫ ∞

0
dq |Ĥx(q, a, ω)|2 , (18)

(we have used the fact that the integrand is symmetric with respect to q).

Performing a similar calculation for ux, we obtain, for finite w,

uhx =
cw
8π4

∫ ∞

0
dωRe[ζx(ω)]

∫ ∞

−∞

dq Ĥz(q, a, ω)
∫ ∞

−∞

dq′ Ĥ∗z (q′, a, ω) sinc
[
w(q − q′)

2

]
,

(19)

and for infinite w

uhx =
c

2π3

∫ ∞

0
dωRe[ζx(ω)]

∫ ∞

0
dq |Ĥz(q, a, ω)|2 . (20)
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The general form of the impedances for a flat structure, one that can be described

using the surface impedance concept, is developed in Refs. [5, 6]. A conclusion of

this work was that the final results—the impedances—were approximate and valid,

provided that the frequency k = ω/c � 1/a—which is satisfied—and that |ζ | � 1

(or h/a � 1), which is not. The expressions for Ĥx(q, a, ω), Ĥz(q, a, ω), that we

need here were not given in the earlier reports. Following the correct derivation of

the fields, we obtained the general form of Ĥx(q, a, ω) and Ĥz(q, a, ω) as functions

of beam offset (not shown). For the special case of the beam on axis, the fields on

the boundary at y = a are

Ĥx = −
4πQ

c
ikq cosh(aq)

ζz(k − q)(k + q) sinh(2aq) + 2ikq
(
ζzζx sinh2(aq) + cosh2(aq)

) ,
Ĥz = −

4πQ
c

ζzkq sinh(aq)

ζz(k − q)(k + q) sinh(2aq) + 2ikq
(
ζzζx sinh2(aq) + cosh2(aq)

) ,(21)

with k = ω/c.

In the case of flat geometry, with corrugated plate width w→ ∞, the total Joule

energy loss on the walls, uz + ux, must equal a point charge beam’s energy loss on

the axis, uw. In this case the point charge loss factor

κ(0) =
uw

Q2 = −
1
πQ

∫ ∞

0
dωRe[Ẽz(ω)] = −

1
π2Q

∫ ∞

0
dω

∫ ∞

0
dq Re[Êz(ω, q)] , (22)

with the on-axis electric field

Êz = −
4πQ

c
ikqζz

ζz(k − q)(k + q) sinh(2aq) + 2ikq
(
ζzζx sinh2(aq) + cosh2(aq)

) . (23)

The impedance is given by

Z(ω) = −
Ẽz(ω)

Q
= −

1
2πQ

∫ ∞

−∞

dq Êz(q, ω) . (24)

Substituting from Eq. 23 and integrating numerically we obtain the impedance. The

real part, for this case (a = 0.7 mm and w → ∞), is shown in Fig. 3. We see that

the impedance is a highly spiked function, with the peak location at ka ≈
√

2a/h ≈
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1.673 [7]. Note that a different, earlier perturbation analysis, one that ignored wall

resistance, gave essentially the same result except that the spike reached to infin-

ity [7]. This implies that the short-range wake is essentially independent of the

boundary conductivity.

1.5 1.6 1.7 1.8 1.9 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ka

R
eZ

[M
Ω
/m

]

FIG. 3. The real part of the longitudinal impedance for the dechirper with plate width

w → ∞. This plot, in different units, and with the spike reaching to infinity, can also be

found in Ref. [7].

The Joule heating energy has two components, uhz and uhx, corresponding to

contributions from ζz and ζx, respectively. Numerically solving Eqs. 18 and 20 for

the infinitely wide plates, we find that uhz = 0.8uw, uhx = 0.2uw, and, to good

accuracy, uh ≡ uhz + uhx = uw = Q2π2/(8a2). This is what we expect: for plates

of infinite width, the sum of the two Joule energy contributions should equal the

energy loss of the on-axis point charge beam.

Performing the numerical integrals for finite plate width w = 12 mm, we obtain
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uh = uhz + uhx using Eqs. 17 and 19. For a = 0.7 mm, we find that the total Joule

loss is a small part of the beam energy loss, uh = 0.03uw (with uhz = 0.91uh). Then

using Eq. 9 we obtain the real part of the Joule heating impedances, Zhz and Zhx.

In Fig. 4 we plot the Joule impedance sum, Re(Zh) = Re(Zhz) + Re(Zhx). Note that

on the scale of the plot, Re(Zh) ≈ Re(Zhz) and Re(Zhx) ≈ 0. As a spot check on

sensitivity to conductivity, we reduced σc by a factor of 4, repeated the calculation,

and found that (uh/uw) increased by 35%.

1.5 1.6 1.7 1.8 1.9 2.0
0.0

0.2

0.4

0.6

0.8

ka

R
eZ

h
[M

Ω
/m

]

FIG. 4. The real part of the Joule heating impedance Re(Zh) = Re(Zhz) + Re(Zhx) for the

beam on axis in the dechirper with half-aperture a = 0.7 mm and plate width w = 12 mm.

We repeat the numerical calculation for several values of plate width w. In Fig. 5

we plot the Joule energy loss vs. plate width, normalized to the point charge loss of

the beam, uw = Q2π2/(8a2). We see that, even for w ∼ 100a, only a small part of the

beam energy loss ends up as Joule heating. For our final estimate of Joule power

loss of a uniform beam of full length ` = 60 µm we need to use the short-range,
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point charge wake of a beam on the axis of a flat dechirper [10]

wz(s) =
π2

4a2 e−
√

s/s0 , (25)

with s0 = 9a2t/[8πα(t/p)2 p2] and α(x) ≈ 1−0.465
√

x−0.070x. For the parameters

of Table I, the scale factor s0 = 434 µm. For a bunch with uniform distribution of

full length `, the loss factor is given by

κ =
1
`

∫ `

0
ds

(
1 −

s
`

)
wz(s) . (26)

Here κ = 19 kV/(pC*m), and the loss compared to a point charge beam is κ/κ(0) =

0.82.

For the beam parameters of Table I the power lost by the beam is Pw = Q2κ frep =

170 W/m. Thus our analytical estimate of the Joule losses for the 12 mm-wide

dechirper plates is the fraction (uh/uw) = 0.03 of this, or Ph = 5 W/m.

BEAM NEAR ONE PLATE

There is interest in streaking the beam by inducing the transverse wakes of the

dechirper, by passing the beam close to one jaw. With the beam a distance from the

near wall of b ∼ 0.25 mm and from the far wall by & 5 mm, the second wall will no

longer affect the results. The physics will be quite different than before: with two

plates the impedance has a narrow resonance whose frequency depends on the plate

separation 2a; in the single plate case this parameter no longer exists. We present

more details of this case, since the analysis of it is a relatively new topic. Note that

in Ref. [11] the wakes for a short beam passing by a single plate of a dechirper are

obtained, and in Appendix B of this report we use the time domain solver CST PS

to test the accuracy of these results.

For the case of an ultra-relativistic beam passing by one plate of a corrugated

structure, one question that comes to mind is: will the radiation generated be the
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FIG. 5. Numerically calculated ratio of Joule loss into metal to wake loss of a point charge

beam, uh/uw = (uhz + uhx)/uw as function of w/(2a) (plotting symbols). The wake loss for

a point particle is uw = Q2π2/(8a2).

same as Smith-Purcell (SP) radiation [14]? The answer is that the radiation is not

“classical" SP radiation. With classical SP radiation, the beam energy is relatively

low (a few MeVs); the radiation wavelength λ = (β−1 − cos θ)p/n [β is the ratio of

the electron speed and that of light, θ is observation angle, p is corrugation period,

and n is an integer greater than zero], i.e. the radiated wavelength is short compared

to the corrugation period; and the coupling is sensitive to the detailed shape of the

corrugations. For our case, in contrast, the radiation is not sensitive to β (we can

and do let β = 1), the radiation period covers several corrugation periods, and the

coupling is insensitive to the details of the corrugation shape.

For the Joule heating calculation we start with the equations for the magnetic

fields on the wall, for a beam offset by y from the axis of a two-plate dechirper
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(equations not shown here). We let y = a − b, and then let a → ∞, to obtain the

fields on the walls of one plate due to a bunch passing by at distance b. The fields

on the wall (at y = b) are given by

Ĥx(q, b, ω) = −
4πQ

c
k|q|e−b|q|

k|q|(1 + ζzζx) + iζz(q2 − k2)
,

Ĥz(q, b, ω) = −iζzĤx(q, b, ω) . (27)

Meanwhile the electric field at the particle location (here, at y = 0) is

Êz(q, 0, ω) = −
4πQ

c
ζzk|q|e−2b|q|

k|q|(1 + ζzζx) + iζz(q2 − k2)
. (28)

First, note that while the point charge energy loss per length of the two-plate

system was uw = Q2π2/(8a2), with a the half gap, for the single plate it is only

uw = Q2/(2b2), with b the distance between the beam’s path and the plate. In Fig. 6

we plot Re(Z), where Z = −Ẽz/Q (in blue). Instead of the narrow spike of the

two-plate case, we now find a relatively broad peak.

Actually, Fig. 6 can be obtained analytically. If we let the resistive terms of

both ζz and ζx be zero, the integral over q that needs to be performed to obtain the

impedance becomes singular. However, the integral can be performed as a Cauchy

integral, yielding a finite result (see Appendix A for details). The result is

Re(Z) =
2π
c

kξ
1 + ξ

e−2ξb/h

∣∣∣∣∣∣
ξ=−1+

√
1+k2h2

, (29)

where h is the depth of corrugation. Note that the frequency at the peak can be

approximated as (k)peak =
√

3/(2hb), which is similar to the perturbation peak fre-

quency formula for the two plate case, (k)peak =
√

2/(ha), with a the half gap. The

result of Eq 29 is given by the red dashes in Fig. 6; we see that this function is

almost identical to the earlier, numerical result that included wall resistance.

We next insert the single plate magnetic fields, Eq. 27, into Eqs. 18, 20, (but

divided by 2, since there is only one plate) and numerically integrate to obtain the

Joule heating impedance for the single, infinitely wide plate example. In Fig. 7 we
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FIG. 6. Re(Z) for beam passing by one, infinitely wide dechirper plate at a distance b =

0.25 mm (blue). The analytical results, Eq. 29, is also shown (red dashes).

show the real part of the Joule heating impedances Re(Zhz), Re(Zhx) (the components

with wall currents aligned in, respectively, the z and x directions) that we obtain.

Again the beam is assumed to pass by at offset b = 0.25 mm from the plate. As

expected, the total Joule heating impedance curve obtained numerically is the same,

to good accuracy, as the impedance curve of Fig. 6. The area under Re(Zhz) [Re(Zhx)]

is 42% [58%] that under Re(Z).

Finally, we insert the single plate magnetic fields, Eq. 27, into Eqs. 17, 19, (again

divided by 2, since there is only one plate) and numerically integrate to find the

Joule heating impedance for a beam passing by single plate with finite width w =

12 mm. The results are shown in Fig. 8. This time the area under the Re(Zhz)

[Re(Zhx)] curve is 0.9% [2.4%] of that under the impedance curve Re(Z). Thus,

uh/uw = 0.033.
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FIG. 7. The real part of the Joule heating impedance Re(Zh) = Re(Zhz) + Re(Zhx) for the

beam passing by a single dechirper plate, for the case of plate width w → ∞ (blue curve),

with the constituent parts given in dashes. The beam passes by at offset b = 0.25 mm from

the plate. The area under Re(Zhz) [Re(Zhx)] is 42% [58%] that under Re(Z).

The short-range, point charge wake of a beam passing by a single plate of a flat

dechirper at offset b is [11]

wz(s) =
1
b2 e−

√
s/s0l , (30)

with s0l = 2b2t/(πα2 p2) and α = 1 − 0.465
√

t/p − 0.070(t/p). In Appendix B we

compare this formula with time-domain simulations, and find that the agreement

is good. For corrugation parameters of Table I, α = 0.636. With distance from

wall b = 250 µm, s0l = 98 µm. For the uniform bunch distribution of Table I,

using Eq. 26, we find that κ = 48 kV/(pC*m). The loss of a point charge beam is

κ(0) = 1/(2b2); thus, κ/κ(0) = 0.67. The power lost by the beam is Pw = Q2κ frep =

434 W/m. Thus our analytical estimate of the Joule losses for the 12 mm-wide
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FIG. 8. The real part of the Joule heating impedance Re(Zh) = Re(Zhz) + Re(Zhx) for

the beam passing by a single dechirper plate, for the case of plate width w = 12 mm (blue

curve), with the constituent parts given in dashes. The beam passes by at offset b = 0.25 mm

from the plate. The area under Re(Zhz) [Re(Zhx)] is 0.9% [2.4%] that under Re(Z).

dechirper plate is the fraction (uh/uw) = 0.033 of this, or Ph = 14 W/m.

NUMERICAL TIME-DOMAIN COMPARISONS

The analytical model for the short-range wakes of an LCLS-type beam pass-

ing between two jaws of the RadiaBeam/LCLS dechirper has been verified in

Ref. [10] using the finite difference, time-domain, wakefield solving program

ECHO(2D) [15]. However, in our analytical Joule heating calculations, for the

case of finite-width plates, we assumed that reflections from the side walls (in x for

a vertical dechirper) are negligible. To see how good this approximation is, we have

performed numerical, time-domain calculations using the program CST PS, both
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for an example with the beam on axis between two dechirper plates, and for an ex-

ample with the beam passing by a single plate. For the case of two dechirper plates,

the accuracy of CST PS simulations was verified by cross-checking with results

using the wakefield code PBCI [13]. Since the bunches are short (zrms ∼ 20 µm),

the catch-up distance [zcu ∼ a2/(2σz)] is large (on the order of cm’s). However, the

most challenging simulation issue is the long damping time of the fields that need

to be followed for the Joule loss calculation. In the double plate case this time is on

the order of cm’s/c.

Figure 9 shows the geometry of the single corrugated plate and the (nominal)

beam path used in the simulations. For modeling the lossy metal, a resistive wall

impedance boundary condition for aluminum is applied. The corrugated plate struc-

ture is enclosed within a larger computational box that has free-space boundary con-

ditions applied on all sides. This is necessary for modeling field radiation and thus,

for the proper computation of the Joule losses. Such boundary conditions are pro-

vided by CST PS. This is why all Joule loss results in the following were obtained

using this program. To confirm that the choice of bounding box does not affect the

results, we performed one calculation with changed bounding box dimensions and

found that the wake obtained was left unchanged.

The simulations are performed in the time domain by tracking a single bunch

along the beam path until the wake potential and Joule loss per unit length saturate

to steady state. Typical plate lengths considered in the simulations are some tens

of cm’s. To make the calculations manageable, for both double- and single-plate

cases, we use Gaussian bunches with σz = 100 µm, i.e. significantly longer than

our nominal bunch length. The resulting mesh with the necessary numerical reso-

lution consists of up to 1.5 × 109 mesh points, and it typically takes several days

to complete just one simulation. Since the typical bunch frequency is much higher

than the structure frequency, the ratio (uh/uw) will be about the same for this bunch

length as for the target rms bunch length (see Table I), σz = 17 µm.
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FIG. 9. Model used in the single-plate, numerical (CST Studio) calculations. The line and

symbols indicate the beam trajectory. The plate width is w = 12 mm, and, nominally, the

beam offset is b = 0.25 mm.

Beam on Axis between Two Dechirper Plates

For the two-plate case, the nominal half aperture is a = 0.7 mm. The numerically

obtained, steady-state bunch wake, for the Gaussian bunch, w̄z(s) is given in Fig. 10.

We see that the wake damps away on a scale of s ∼ 150 mm. Fourier transforming

the wake, we obtain the impedance (not shown). We find that Re(Z) is given by a

collection of spikes (dominated by the first one) beginning with ka = 1.36, 1.53,

1.77; note that these values agree with results of mode matching calculations, ap-

plied to the same geometry [8]. This behavior is quite different than our analytical,

perturbative solution, with its one spike at ka = 1.67 (see Fig. 3). This mismatch

was expected.

For the numerical Joule losses calculations, the beam passed by a two-plate

dechirper of length L = 135 mm. From the magnetic fields at the plate surfaces,

the Joule heating power at each time step was obtained. Fig. 11 shows the results

for the nominal a = 0.7 mm case (blue, solid curve); the steady-state was obtained

by extrapolation using a double exponential fitting function (the dashes). The final

result is Ph = 13.5 W/m. The wake power loss for the σz = 100 µm Gaussian bunch
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FIG. 10. The numerically obtained, longitudinal wake for the beam moving on-axis of a

double plate dechirper. Here half-aperture a = 0.7 mm and dechirper length L = 135 mm;

the driving bunch is Gaussian with σz = 100 µm. Note that the wake is normalized to

structure length.

Pw = 108 W/m. Thus, the ratio of Joule heating and wake energy, according to the

numerical calculation, is (uh/uw)num = Ph/Pw = 0.125, which is a factor of 4 larger

than the analytical result obtained above, (uh/uw)ana = 0.030. Our best estimate

for the Joule power loss for the LCLS-II beam, P̄h, is obtained taking (uh/uw)num

and multiplying it with the wake power (analytically obtained above) for the short,

uniform LCLS-II bunch shape, (Pw)ana; i.e.

P̄h = (uh/uw)num(Pw)ana . (31)

For the nominal case we obtain P̄h = (0.125)(170 W/m) = 21.0 W/m.

As a final word on the two-plate calculation, note that a second case was also

simulated, with a = 1.4 mm. In this case, (h/a) = 0.35 is half the size of before,
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FIG. 11. Beam on-axis between two plates: Joule power calculations obtained by time-

domain simulation, for plate half-aperture a = 0.7 mm (blue) and a = 1.4 mm (blue). The

beam traverses the plate from its beginning, at z = 0, to its end, at z = 0.135 m. The dashed

lines give extrapolation to steady-state. Here Q = 300 pC, frep = 300 kHz; the driving

charge is Gaussian with σz = 100 µm.

and we find that the impedance (not shown) is closer to the analytical one. The

simulation finds that the Joule power Ph = 2.64 W/m (see Fig. 11, the red curve).

The energy ratio (uh/uw)num = 0.065, which is a factor of 2.5 larger than the an-

alytical value (uh/uw)ana = 0.025, rather than the factor of 4 we had before. For

a = 1.4 mm, (Pw)ana = 46 W/m, and our best estimate of Joule power loss becomes

P̄h = (0.065)(46 W/m) = 3.0 W/m.
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Beam Passing by a Single Corrugated Plate

The numerically obtained wake for a 100 µm Gaussian bunch passing at distance

b = 0.25 mm from the plate is shown in Fig. 12. Here we see that the wake dies out

after s ∼ 120 mm and that there are reflections from the sides of the plate. Note that

since the period in the reflections is ∼ 13.5 mm (and not equal to the plate width,

w = 12 mm), we infer that the group velocity of the waves moving sideways is

vg = (12/13.5)c = 0.89c.
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FIG. 12. The numerically obtained, longitudinal wake for a beam moving past a single-

plate dechirper. Here the beam offset b = 0.25 mm and dechirper length L = 115 mm; the

driving bunch is Gaussian with σz = 100 µm. Note that the wake is normalized to structure

length.

The real part of the impedance Re(Z) for the single plate example is given in

Fig. 13 (blue curve). To obtain this, the longitudinal wake (Fig. 12) was Fourier

transformed and multiplied by ek2σ2
z /2. The narrow, evenly-spaced spikes in the
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impedance [with spacing ∆ f ≈ c/(13.5 cm)] are due to the reflections in the wake.

A short bunch, however, cannot resolve these spikes. To generate a “broad-band

impedance", one that is easier to compare with our analytical result, we multiplied

the wake by a Gaussian form factor, with rms length σ = 5 mm, before Fourier

transforming. The resulting impedance is given by green dashes in the figure. Our

analytical result (Fig. 6) is given in red dashes. Although the low and higher fre-

quency behavior of the red and green curves agree well, the numerical peak is nar-

rower and the frequency of the peak is lower than the analytical one. This disagree-

ment appears to be a consequence of the corrugation parameters not being in the

perturbative regime: here (h/b) = 2, which is not small compared to 1.
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FIG. 13. The real value of the impedance Re(Z) for the single plate example (blue curve).

The broad-band impedance obtained from the same wake is given by green dashes. The

analytical perturbation result (Fig. 6), is given by red dashes.

For Joule loss simulations, the beam was passed by a single-plate dechirper of
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length L = 115 mm. Fig. 14 shows the results for the nominal b = 0.25 mm case

(blue, solid curve), and the extrapolation to steady-state (the dashes). The steady-

state result is Ph = 14.5 W/m. The wake power loss for the σz = 100 µm Gaussian

bunch Pw = 264 W/m. Thus, the ratio of Joule heating and wake energy according

to the numerical calculation is (uh/uw)num = Ph/Pw = 0.055; this is a factor of 1.67

larger than the analytical result obtained above, (uh/uw)ana = 0.033. This is due

to the multiple reflections of the wakefield from the sides of the plate that are not

considered in the analytical model. Our best estimate of the Joule power loss for

the LCLS-II beam, P̄h = 24.0 W/m.

More single plate simulations were performed for larger beam offsets: b = 0.5,

1.0, 1.5 mm. As we move to ever smaller values of (h/b), the numerically obtained

(broad-band) impedance agrees better with the analytical one. The numerical en-

ergy ratio (uh/uw), however, remains about a factor of 2 larger than the analytical

one. For b = 0.5 mm, the simulations find that the Joule power Ph = 4.0 W/m (see

Fig. 11, the red curves). The energy ratio (uh/uw)num = 0.035, and our best esti-

mate of Joule power loss becomes P̄h = 4.6 W/m. Finally, note that our nominal,

two-plate and single-plate results are summarized in Table II.

TABLE II. Summary of Joule heating calculations for the LCLS-II dechirper, giving case;

wake power lost by beam, (Pw)ana; ratio of energy in Joule heating and beam energy loss,

analytical calculation, (uh/uw)ana; Joule power loss, analytical calculation, (Ph)ana; energy

ratio, according to numerical calculation, (uh/uw)num; and our best estimate of Joule losses,

P̄h = (uh/uw)num(Pw)ana. Both cases assume the high charge scenario, with Q = 300 pC

and frep = 100 kHz; the bunch shape is taken as uniform, with total length ` = 60 µm.

Case (Pw)ana[W/m] (uh/uw)ana (Ph)ana[W/m] (uh/uw)num P̄h [W/m]

Two plates, a = 0.7 mm 170 0.030 5 0.125 21.0

Single plate, b = 0.25 mm 435 0.033 14 0.055 24.0
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FIG. 14. Single plate: numerically obtained, Joule power calculations for beam offsets

b = 0.25 mm (blue) and b = 0.5 mm (red). The beam traverses the plate from its beginning,

at z = 0, to its end, at z = 0.115 m. The dashed lines give extrapolation to steady-state.

Here Q = 300 pC, frep = 300 kHz; the driving charge is Gaussian with σz = 100 µm.

CONCLUSIONS

We have performed Joule power loss calculations for the RadiaBeam/LCLS-

II dechirper, whose engineering details—for example concerning the cooling

required—are still being finalized. We have investigated the configurations of

the beam on-axis between the two plates, for chirp control, and for the beam es-

pecially close to one plate, for use as a fast kicker. Our calculations involve an

analytical model that uses a surface impedance approach, valid for perturbatively

small dechirper parameters In addition, our model ignores effects of field reflec-

tions at the sides of the dechirper plates, and is thus expected to underestimate the

Joule losses. The analytical results were also tested by numerical, time-domain
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simulations using computer programs in CST Studio and PBCI. We find that most

of the wake power lost by the beam is radiated out to the sides of the plates. While

our theory can be applied to the LCLS-II dechirper with large gaps, for the nominal

apertures we are not in the perturbative regime and the reflection contribution to

Joule losses is not negligible. With input from computer simulations, we estimate

the Joule power loss (assuming bunch charge of 300 pC, repetition rate of 100 kHz)

is 21 W/m for the case of two plates, and 24 W/m for the case of a single plate.

The single-plate configuration of a dechirper has, until now, received little atten-

tion in the literature. In this report we have presented also the impedance of a beam

passing by a single corrugated plate. Also, in Appendix B we have numerically

confirmed that the analytical expressions for short-range wakes found in Ref. [11]

are valid when (h/b) � 1, where h is depth of corrugation and b is distance of beam

from plate. In fact, we showed that the longitudinal and dipole (but not quadrupole)

wakes agree well even for (h/b) . 2.
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Appendix A DERIVATION OF Re(Z) FOR BEAM PASSING BY A SINGLE DECHIR-

PER PLATE

The impedance is

Z(ω) = −
1

2πQ

∫ ∞

−∞

dqÊz(q, 0, ω) , (A.1)
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where (see Eq. 28)

Êz(q, 0, ω) = −
4πQ

c
ζzk|q|e−2b|q|

k|q|(1 + ζzζx) + iζz(q2 − k2)
. (A.2)

We need to calculate the following integral

Z(ω) =
4
c
ζzk

∫ ∞

0
dq

qe−2bq

kq(1 + ζzζx) + iζz(q2 − k2)
(A.3)

(where we have used the fact that the integrand is symmetric with respect to q). In

the limit when the resistive term ζrw → 0, we have ζx = 0 and ζz = −1
2 ihk and the

integral reduces to

Z(ω) = −
4i
c

hk2
∫ ∞

0
dq

qe−2bq

2kq + hk(q2 − k2)
. (A.4)

It is easy to see that the denominator of the integrand vanishes at

q = qr =
−1 +

√
1 + h2k2

h
, (A.5)

and the integrand has a pole at this point. This pole has to be bypassed in the com-

plex plane (of variable q) or, equivalently, the integration path needs to be shifted

from the real axis. The direction of the shift can be found by analyzing the position

of the pole when ζrw is small, but not equal to zero. This analysis shows that for

non-zero ζrw the pole has a positive imaginary part, which means that in the limit

ζrw → 0 the integration path should be modified as shown in Fig. 15.

We are interested in calculating the real part of the impedance, Re(Z). Because

of the imaginary factor in front of the integral (A.4), the real part of Z is equal to the

half-residue of the integrand at q = qr. A straightforward calculation of the residue

yields

Re(Z) =
2π
c

kξ
1 + ξ

e−2ξb/h

∣∣∣∣∣∣
ξ=−1+

√
1+k2h2

. (A.6)
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FIG. 15. Integration path C in the complex plane of variable q.

Appendix B CONFIRMATION OF SHORT-RANGE WAKE FORMULAS FOR

THE CASE OF A BEAM PASSING BY A SINGLE CORRUGATED PLATE

The short-range wake formulas for a beam passing between the two corrugated

plates of a dechirper were verified by time-domain, finite difference simulations

using the computer program ECHO(2D) [10]. Then the short-range wake formulas

for a beam passing by a single corrugated plate were derived in Ref. [11] without

such verification. Here we present time-domain, finite difference simulations using

the time-domain Maxwell Equation solver of CST Studio with the goal of testing

the single-plate, short-range wake formulas.

The analytical, longitudinal point-charge wake for a beam passing by a single

corrugated plate at distance b is [11]

wz(s) =
1
b2 e−

√
s/s0l , (B.1)

with s0l = 2b2t/(πα2 p2) and α = 1 − 0.465
√

t/p − 0.070(t/p). For corrugation

parameters of Table I, α = 0.636. With distance from wall b = 250 µm, s0l = 98 µm.
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The dipole wake (we assume the plate is above the beam at vertical offset b)

wyd(s) =
2
b3 s0y

[
1 −

(
1 +

√
s

s0y

)
e−
√

s/s0y

]
, (B.2)

with s0y = 8b2t/(9πα2 p2). Here s0y = 44 µm. The quad short-range wake is given

by wyq(s) = 3
2bwyd(s). The wake of a Gaussian bunch of length σz can be obtained

from the point-charge wake w(s) by convolution; e.g.

w̄z(s) = −
1

√
2πσz

∫ ∞

0
ds′wz(s′) exp

[
−

1
2

(s − s′)2

σ2
z

]
. (B.3)

The Gaussian bunch wakes w̄yd(s) and w̄yq(s) are obtained in the analogous manner,

except without the overall minus sign.

In Fig. 16 we plot the longitudinal, dipole, and quad wakes of a Gaussian bunch

(with σz = 100 µm) passing by a single dechirper plate at distance b = 250 µm, as

obtained numerically (in blue) and compare with the analytical results (in red). The

bunch distribution is also shown, with the bunch head to the left. We see that the

longitudinal and dipole bunch wakes agree well over the bunch; the quad analytical

wake, however, is significantly larger than the numerical result.

The numerical simulations were repeated for bunch offsets b = 0.5, 1, 1.5 mm.

Averaging the bunch wake over the Gaussian bunch distribution we obtain the loss

factor or kick factors. In Fig. 17 we compare the loss and kick factors for the four

beam offsets (blue symbols) with the analytical result (red, dashed curves). (The

quad kick factors are shown on a log scale, to better see the comparison at the

larger values of b.) We see that κ and κyd agree well for all offsets. However, κyq,

at b = 250 (500) µm has an analytical solution that is 90% (45%) larger than the

numerical one; at the larger two offsets, however, the agreement is again quite good.

In conclusion, we have verified that the short-range longitudinal, dipole, and

quad analytical formulas for wakes of a single plate agree well with the results of

numerical simulations, provided we are in the perturbative regime, i.e. (h/b) � 1.
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Furthermore, the longitudinal and dipole wakes agree well even for (h/b) . 2.
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FIG. 16. Short-range wakes for a Gaussian bunch passing by a single plate of the dechirper

at offset b = 250 µm: w̄z (top), w̄yd (middle), and w̄yq (bottom). The CST results are given

in blue, those of the analytical model in red. The plate width used in the simulations is

w = 12 mm, the bunch length σz = 100 µm. The shape of the bunch distribution λ(s), with

the head to the left, is also shown. 35
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FIG. 17. Single plate loss factor κ (top), dipole kick factor κyd (middle), and quad kick

factor κyq (bottom) as functions of distance of the beam from the wall b, showing the CST

results (blue symbols) and those of the analytical model (red dashes). The bunch is Gaussian

with length σz = 100 µm; the plate width in the simulations is w = 12 mm. Note that the

ordinate of the last plot is given on a log scale.36


