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Abstract

In previous work [1] general expressions, valid for arbitrary bunch lengths, were derived

for the wakefields of corrugated structures with flat geometry, such as is used in the Radia-

Beam/LCLS dechirper. However, the bunch at the end of linac-based X-ray FELs—like the

LCLS—is extremely short, and for short bunches the wakes can be considerably simplified.

In this work, we first derive analytical approximations to the short-range wakes. These are

generalized wakes, in the sense that their validity is not limited to a small neighborhood

of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test

particles. The validity of these short-bunch wakes holds not only for the corrugated struc-

ture, but rather for any flat structure whose beam-cavity interaction can be described by

a surface impedance. We use these wakes to obtain, for a short bunch passing through a

dechirper: estimates of the energy loss as function of gap, the transverse kick as function of

beam offset, the slice energy spread increase, and the emittance growth. In the Appendix,

a more accurate derivation—than is found in [1]—of the arbitrary bunch length wakes is

performed; we find full agreement with the earlier results, provided the bunches are short

compared to the dechirper gap, which is normally the regime of interest.

Keywords: Chirp control, Relativistic beam, Corrugated pipe
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INTRODUCTION

The idea of using a corrugated structure as a “dechirper" in a linac-based X-ray

FEL was first proposed in Ref. [2]. The idea was to use a passive device to remove

residual energy chirp in the beam before it enters the undulator for lasing. The

original report considered a round structure. However, to allow for adjustability,

it was next proposed to use a corrugated structure in flat geometry. But because

of an unavoidable quadrupole wake excited in flat geometry, the structure is best

built in two halves, with one half rotated by 90 degrees with respect to the other, in

order to, in principle, have the quad wake forces cancel. Such structures have been

built by RadiaBeam and tested, first at Pohang [3] and more recently at the Linac

Coherent Light Souce (LCLS) [4],[5]. The RadiaBeam/LCLS dechirper is the first

one that has been tested at high energies (multi GeV) and short bunch lengths (10’s

of microns).

For a nominal set of parameters for the LCLS, the dominant wavelength of the

wakefields ∼ 2.5 mm (see e.g. [6]). The full bunch length, however, is normally

small, . 100 µm. Thus, we can expect that a model of the longitudinal (steady-

state) wake that assumes that it is constant and equal to its value at the origin can be

used to approximate the wake effects of the beam in such machines. The real wake

will drop from the origin (see [7]), and such a model will give a maximum bound of

the wake, one that becomes more accurate as the bunch becomes shorter (assuming

it is not so short that the transient component of the wake becomes significant).

For the transverse wake, equal to zero at the origin, we use an approximation of

a linear function with the constant slope equal to that at the origin. We will see

that, compared to numerically calculating the wakes, we gain by obtaining simple

analytical functions that show us the structure of the wakes.

The calculation of wakes of corrugated structures has been performed for round

structures, assuming small corrugations and using perturbation methods [8], [9].
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The same has been done for flat geometry [10].Time domain simulations have been

performed for more accurate results, particularly when the corrugation parameters

are not small compared to the dechirper gap [11], [12], [7]. More recently, a detailed

analysis of the RadiaBeam/LCLS dechirper has been performed using field match-

ing methods [6]. Finally, in Ref. [1], for the case of flat geometry and assuming the

impedance can be characterized by a surface impedance, equations for the gener-

alized wakefields, valid for arbitrary bunch length, are derived. By “generalized"

we mean (point charge) wake functions for which the transverse positions of driv-

ing and test particles are arbitrary, and are not limited to being near the symmetry

plane.

We begin the present report with the results of [1] and obtain the values at the

origin of the (generalized) longitudinal wake and the slope of the transverse wakes.

That is enough to obtain an approximation to the energy loss and kick experienced

by a pencil beam (one with no transverse extent). There is some interest in using a

dechirper as a fast kicker, by passing a beam close to one jaw (see e.g. [7], [13]),

and the case of the beam near the wall is automatically included. Then, assuming

that the transverse beam sizes are small compared to the gap, we derive perturbation

solutions of the wakes, valid over a small neighborhood around the beam centroid.

This allows us to find wake effects like slice energy spread increase and projected

emittance growth. Next, we briefly investigate the accuracy of our model. We

finally end with conclusions. In the Appendix, we give a more accurate derivation,

than found in [1], of the flat geometry wakes for arbitrary bunch lengths.

Representative beam and machine parameters for the LCLS, which will be used

in example calculations in this report, are given in Table I. Note that the entire Ra-

diaBeam/LCLS dechirper assembly comprises two 2-m-long sections, one oriented

horizontally, the other vertically. The wakes are given here in cgs units; to convert

to MKS one merely needs to multiply by (Z0c/4π), with Z0 = 377 Ω and c is the

speed of light. Wakefield induced energy loss, however, has been converted to MKS
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units, for convenience.

TABLE I. Selected beam and machine properties (at the dechirper) used in example cal-

culations. This is a typical combination of parameters found in Ref. [6]. The longitudinal

bunch distribution is taken to be uniform. In the current lattice, the first (second) dechirper

is vertically (horizontally) orientated, with positive (negative) α.

Parameter name Value Unit

Beam energy, E 6.6 GeV

Charge per bunch, Q 150 pC

Beam current, I 1.5 kA

Full bunch length, ` 30 µm

Normalized emittance, εxn / εyn 0.77 / 0.39 µm

Beta function, βx / βy 4.5 / 23.7 m

Alpha function, αx / αy ±0.024 / ±1.572

Beam size, σx / σy 16 / 27 µm

Dechirper half aperture, a 0.7 mm

Dechirper section length used, L 2 m

GENERALIZED WAKEFIELDS FOR SHORT BUNCHES

Longitudinal Wake

We consider a horizontally oriented dechirper, of full gap 2a, with the symmetry

plane located at y = 0, see Fig. 1. In the case of the RadiaBeam/LCLS dechirper, the

corrugation parameters are period p = 0.5 mm, depth h = 0.5 mm, and longitudinal

gap t = 0.25 mm. The plate width in x, w = 12.7 mm. With the typical gap a .

a few millimeters, the width w does not affect the short-range wakes, and we can
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let w → ∞. This is the model we consider and what we designate by the term “flat

geometry."

z
y

2a

t

p

h

FIG. 1. Geometry of a horizontal dechirper. A rectangular coordinate system is centered on

the symmetry axis of the chamber. The blue ellipse represents an electron beam propagating

along the z axis.

To calculate both the longitudinal and transverse (point charge) wakes at the

origin, s = 0, (s the distance the test particle trails the driving particle) we note

that they are defined by the asymptotic behavior of the impedance at wave number

k → ∞. The relation between the longitudinal wake and the impedance is

Zl(k) =
1
c

∫ ∞

−∞

ds w(s)eiks , (1)

with w(s) the (point charge) wake. Near the origin the wake can be approximated

by the step function

w(s) = w0h(s) , (2)

with w0 the value of the wake at s → +0; h(s) = 0 for s < 0, 1 for s > 0 .

Substituting the approximated wake into (1) and performing the integration we find
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that the asymptotic form of the impedance Zla(k)

Zla(k) =
w0

c

∫ ∞

0
ds h(s)eiks =

iw0

kc
, (3)

where we have neglected the contribution to the integral at the upper limit. At high

frequencies the leading order term of the impedance is imaginary, with Zla ∼ i/k.

Thus,

w0 = −ikcZla(k) = −ic lim
k→∞

kZl(k) (4)

which is a positive constant.

In general, as we shall see below, the wake at the origin w0 is a function of both

driving and test particle transverse positions, (x0, y0) and (x, y). For the bunch wake

Wλ(x, y, s)—i.e. the wake seen by a test particle within a bunch—it is often sufficent

to consider a pencil beam, that is one without transverse extent. For this case, for

a short bunch, the wake is obtained by setting x0 = x, y0 = y, and performing the

convolution

Wλ(y, s) = −

∫ ∞

0
w(s′)λ(s − s′) ds′ ≈ −w0(x0 = x, y0 = y)

∫ s

0
λ(s′) ds′ , (5)

with λ(s) the longitudinal bunch distribution. (Note, a pencil beam wake has no

x dependence.) When a transverse extent needs to be included, for example when

calculating the slice energy spread increase or the emittance growth, we need to

average over x0 and y0 to find the bunch wake:

Wλ(x, y, s) = −

∫
λx(x0) dx0

∫
λy(y0) dy0

∫ ∞

0
w(x0, y0, x, y, s′)λ(s − s′) ds′

≈ −

∫
dx0λx(x0)

∫
dy0λy(y0) w0(x0, y0, x, y)

∫ s

0
λ(s′) ds′ , (6)

with λx(x), λy(y), the transverse bunch distributions. In Eq. 6 we have assumed

that the 3D distribution function of the bunch can be represented as a product

λx(x)λy(y)λ(s).
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In the LCLS the longitudinal bunch shape is rather uniform; for such a case the

pencil beam wake

Wλ(s) ≈ −w0
s
`
, (7)

with ` the full bunch length. The loss factor κ, minus the average of the bunch

wake, is simply given by κ = 1
2w0.

To obtain the high frequency longitudinal impedance for the dechirper, we start

from the general impedance expression [1]

Zl(k) =
2ζ
c

∫ ∞

−∞

dq q csch3(2qa) f (q, y, y0)e−iq(x−x0) , (8)

where ζ is the surface impedance, a is the half-gap of the dechiper, and the driving

and test particles have transverse positions of (x0, y0) and (x, y), respectively. The

function f = N/D, with

N = q(cosh[q(2a − y − y0)]−2 cosh[q(y − y0)] + cosh[q(2a + y + y0)])

−ikζ(sinh[q(2a − y − y0)] + sinh[q(2a + y + y0)]) ,

D = [q sech(qa) − ikζcsch(qa)][q csch(qa) − ikζsech(qa)] . (9)

Eqs. 8 and 9 are derived in Ref. [1] using an approach that does not reveal all the

constraints required for its validity. In the Appendix we perform a more accurate

derivation of the general wake solution for the dechirper than is found in Ref. [1].

We find that Eqs. 8 and 9 are valid provided that the bunch length over half gap,

σz/a, is small, which is indeed the parameter regime of interest.

We now take the limit of large k in Eq. 8 by neglecting terms on the order of 1/k

and find

Zla(k) =
2i
ck

∫ ∞

−∞

dq q e−iq(x−x0) sinh[q(2a − y − y0)] + sinh[q(2a + y + y0)]
sinh3(2qa)csch(qa)sech(qa)

. (10)

The integral can be performed analytically, and when combined with Eq. 4, we find
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that

w0 =
π2

4a2 Re
[
sech2

(
π[(x − x0) + i(y + y0)]

4a

)]
=

π2

2a2

1 + cosh
[
π(x−x0)

2a

]
cos

[
π(y+y0)

2a

]
(
cosh

[
π(x−x0)

2a

]
+ cos

[
π(y+y0)

2a

])2 . (11)

Note that the second form of Eq. 11, for the special case x0 = y0 = 0, can be found

derived in Ref. [14]. We note that the Laplacian applied to Eq. 11 equals 0, as it must

for wakefields (see e.g. Ref. [15]). In addition, if we exchange (x0, y0) and (x, y),

w0 remains unchanged, which is required of a structure with flat geometry [12].

We see, in addition, that, when both particles are on-axis, we obtain a minimum

value of w0 = π2/4a2; the same result is obtained if both particles have the same x

position with y = −y0.

Note that the surface impedance ζ does not enter into our final result, Eq. 11.

Thus, this result is valid not only for the dechirper, but rather for any structure with

flat geometry whose boundary condition can be described by a surface impedance.

For example, it is also valid for a resistive wall impedance [16], for the impedance

of a perfectly conducting pipe with shallow corrugations [17], and for a disk-loaded

accelerating structure at high frequencies [18].

For a pencil beam (x0 = x, y0 = y), Eq. 11 becomes

w0 =
π2

4a2 sec2
(
πy
2a

)
. (12)

The minimum loss is for a beam on axis, when w0 = π2/4a2. There is some interest

in using a dechirper as a fast kicker, by passing a beam close to one jaw; if the beam

is near the wall, i.e. y = a − d with d/a small, then w0 ≈ 1/d2. The average energy

loss (in MKS units, in [eV]) of a pencil beam is

(Ew)av =
Z0ceQL

8π
w0 =

π

32a2 Z0ceQL sec2
(
πy
2a

)
, (13)

with Q the bunch charge and L the dechirper length. The induced chirp is twice

this value, divided by the total bunch length `, with the tail of the beam losing
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the most energy. For a beam on axis, for the representative parameters of Table I,

(Ew)av = 6.8 MeV, with the bunch tail losing twice this amount.

Transverse Wake

In the transverse case, the impedance Zy(k) is connected to the wake wy(z) by

Zy(k) = −
i
c

∫ ∞

−∞

ds wy(s)eiks , (14)

and the same kind of formula applies to the impedance in x, Zx(k). Near the origin

the (point charge) wake can be approximated by

wy(s) ≈ w′y0s h(s) , (15)

with w′y0 the value of the slope of the wake at s→ +0. Substituting this approxima-

tion into (14), we find the asymptotic impedance

Zya(k) = −
iw′y0

c

∫ ∞

0
ds seiks =

iw′y0

ck2 , (16)

where again we have neglected the contribution to the integral at the upper limit.

Thus, from the high frequency impedance we obtain

w′y0 = −ik2cZya(k) = −ic lim
k→∞

k2Zya(k) , (17)

which is a positive constant.

The vertical bunch wake Wλy(s) for a short bunch, pencil beam is obtained by

the convolution

Wλy(y, s) =

∫ ∞

0
wy(s′)λ(s − s′) ds′ ≈ w′y0(x0 = x, y0 = y)

∫ s

0
λ(s′)s′ ds′ , (18)

and there is no horizontal wake force. (For a bunch with a transverse distribution,

averaging needs to be performed over x0, y0, just like in the longitudinal case dis-

cussed above.) For a uniform bunch distribution, the bunch wake

Wλy(y, s) ≈ w′y0
s2

2`
, (19)
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with ` the full bunch length. The kick factor κy, the average of the bunch wake, is

simply given by κy = 1
6w′y0`.

To calculate the slope of the transverse wake at the origin for the dechirper we

begin with the Panofsky-Wenzel theorem [19], Zy = (1/k)(∂Zl/∂y). Combining

with Eqs. 4, 17, we obtain

w′y0 =
∂w0

∂y
. (20)

The final answer is obtained by substituting from Eq. 11. For the wake in the x

direction, in the same manner, one solves equations that correspond to Eqs. 14–20.

In compact form, one can write the final answer as

w̄′0 ≡ w′x0 + i w′y0 = Re( f ) + i Im( f ) , (21)

with

f = −
π3

8a3 tanh
(
π[(x − x0) − i (y + y0)]

4a

)
sech2

(
π[(x − x0) − i (y + y0)]

4a

)
. (22)

Again we find that ζ does not enter in the final result, and that the wakes w′x0, w′y0,

satisfy Laplace’s equation. If we exchange (x0, y0) and (x, y) then (w′x0,w
′
y0) →

(−w′x0,w
′
y0). For the special case x = x0,

w′x0 = 0 , w′y0 =
π3

8a3 tan
(
π(y + y0)

4a

)
sec2

(
π(y + y0)

4a

)
. (23)

For a pencil beam near the wall, i.e. for x0 = x, y0 = y, and y = a − d with d/a

small, then w′y0 ≈ 1/d3.

For a pencil beam, the average vertical kick experienced by the beam,

(
y′w

)
av =

Z0c
24π

(
eQL`

E

)
w′y0 =

π2

192a3 Z0c
(
eQL`

E

)
sec2

(
πy
2a

)
tan

(
πy
2a

)
. (24)

For the parameters in Table I, near the axis, the average vertical kick is (y′w)av/y =

52 µr/mm; the kick at the bunch tail is three times larger.
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WAKES FOR BEAMS WITH SMALL TRANSVERSE SIZE

Longitudinal Wake

For the purpose of computing the longitudinal wake effect on slice energy

spread, we need to know the wake in a small neighborhood of transverse space.

In this report, for simplicity, let us assume that the transverse bunch distributions

(in x and y) are symmetric about a centroid. Consider that a beam is centered at

coordinates (0, yc), where a driving and test particle have respectively coordinates

(x0, y0) = (x0, yc + ∆y0) , (x, y) = (x, yc + ∆y) , (25)

with ∆y0/a, ∆y/a � 1. Then Eq. 11 can be expanded as

w0 ≈
π2

4a2 sec2
(
πyc

2a

) (
1 +

π

2a
tan

(
πyc

2a

)
(∆y0 + ∆y)

+
π2

16a2 sec2
(
πyc

2a

) [
2 − cos

(
πyc

a

)] [
(∆y0 + ∆y)2 − (x0 − x)2

] )
. (26)

Here we have kept terms to second order in x0/a, x/a, ∆y0/a, ∆y/a. With the

particles near the axis (yc = 0), we have

w0 =
π2

4a2

(
1 +

π2

16a2

[
(y0 + y)2 − (x0 − x)2

] )
. (27)

With the particles near the wall (yc = a−d, with d/a small), and with both particles’

offsets being small compared to d, we have

w0 =
1
d2

(
1 +

(∆y0 + ∆y)
d

+
3

4d2

[
(∆y0 + ∆y)2 − (x0 − x)2

] )
. (28)

Slice Energy Spread

Since the longitudinal wake depends on the transverse offset of the driving and

test particles, for a distribution of particles with transverse extent, the wake will

increase the slice energy spread. For simplicity let us assume that the beam is
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bi-Gaussian in x and y, with rms respectively of σx and σy, and with a uniform

distribution in s. Then the rms energy spread of slice s is given by (Wλ)2
rms =

〈W2
λ〉 − 〈Wλ〉

2, where averaging means to integrate over the Gaussian distributions

in x, ∆y. For Wλ we consider the expression given in Eq. 26 averaged over x0 and

y0 according to Eq. 6. We note that two terms will contribute to (Wλ)2
rms: a constant

times (∆y0 + ∆y)2
rms /a

2, and another constant times [(∆y0 + ∆y)2 − (x0 − x)2]2
rms/a

4.

Performing the averaging over the transverse distributions, we find that the rms of

these combination of parameters are

(∆y0 + ∆y)2
rms = 〈(∆y0 + ∆y)2〉 = σ2

y ,[
(∆y0 + ∆y)2 − (x0 − x)2

]2

rms
= 2

(
σ4

x + σ4
y

)
. (29)

Now let us consider the rms slice energy spread induced in the beam in the

MKS system (in eV) (Ēw)rms(s), assuming that the beam is sufficiently short with a

uniform longitudinal distribution. In the general case (Eq. 26), with yc/a not small,

yc � σy, (and assuming σx/a, σy/a small), we find that

(
Ēw

)
rms

(s) =

(Z0c
4π

)
eQL(w0)rms

( s
`

)
=
π2

32
sec2

(
πyc

2a

)
tan

(
πyc

2a

)
Z0c

(eQLs
a3`

)
σy ,

(30)

with ` the full bunch length. With the beam centered on axis, we use Eqs. 27, 29,

to obtain (
Ēw

)
rms

(s) =

√
2π3

256
Z0c

(eQLs
a4`

) (
σ4

x + σ4
y

)1/2
. (31)

With the beam near the wall (yc = a − d, with d/a small)(
Ēw

)
rms

(s) =
Z0c
4π

(eQLs
d3`

)
σy . (32)

If we consider just one 2-m-long half of dechirper (and assume the other half is

completely opened up and not affecting the beam) and take the beam on axis with

representative parameters and a = 0.7 mm (see Table I), we find the rms energy

spread induced at the tail of the bunch is (Ēw)rms(`) = 18.7 keV. Note that if we,
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instead, were to move the beam near only one jaw, at a distance d = 0.7 mm, and

move the other jaw far away, we obtain (Ēw)rms(`) = 210 keV.

Transverse Wake

Again consider the case when a driving and test particle coordinates are given

by Eq. 25 with ∆y0/a, ∆y/a � 1. Then, keeping leading terms in Eq. 21 we obtain

w′x0 = −w′q0(x − x0) , w′y0 = w′d0 + w′q0∆y , (33)

with

w′q0 =
π4

32a4

[
2 − cos

(
πyc

a

)]
sec4

(
πyc

2a

)
,

w′d0 =
π3

8a3 sec2
(
πyc

2a

)
tan

(
πyc

2a

)
+ w′q0∆y0 . (34)

Note the wake is of the form

wx = −wyq(x − x0) , wy = wyd + wyq∆y , (35)

which contains only two independent wake components, the (vertical) dipole (wyd)

and quad (wyq) wake functions; such a form is required for the local behavior of

wakes in flat geometry. The quad wake term in Eq. 33, w′q0, gives a kick that is

focusing in x (kicking toward the driving particle) and defocusing in y (kicking

away from the axis). Its amplitude gives the inverse focal length of the quad kick.

For particles with small offsets from the axis (yc = 0), we have

w′x0 = −
π4

32a4 (x − x0) , w′y0 =
π4

32a4 (y0 + y) . (36)

Close to the wall (yc = a − d, with d/a small, and with particle offsets small com-

pared to d) we have

w′x0 = −
3

2d4 (x − x0) , w′y0 =
1
d3 +

3
2d4 (∆y0 + ∆y) . (37)
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Emittance Growth

For a beam not centered on-axis, the dipole wake will give a kick to the beam’s

slice centroids, one that increases from head to tail of the bunch and results in

projected emittance growth. The quad wake—even for a beam centered on axis—

will focus (defocus) in x (y) by an amount that increases from the head to tail of the

bunch, and also results in projected emittance growth. Note, however, that the slice

emittance is not affected by the wakes, at least not for the wakes taken to this order.

Let us begin with considering the quad wake. The inverse focal length of the

quad kick in a short, uniform bunch is given by

f −1
q (s) = k2

q(s)L =

(Z0c
8π

) (eQL
E`

)
w′q0s2 , (38)

with kq(s) the effective quad strength, and with the quad wake component w′q0 given,

in general, by Eq. 34. The quad wake effect can be considered significant whenever

β f −1
q (`) & 1, with β representing the larger lattice beta function at the dechirper. For

the parameters in Table I, with the beam centered on the axis (yc = 0 in Eq. 34), we

find that β f −1
q (`) = 0.35 (1.8) in x (y). Thus, the quad wake may be significant in

y. Note that the effect is smaller by the factor 0.49 if we keep the beam a distance

0.7 mm from one wall, but move the other wall far away (see Eq. 37). The dipole

kick transforms y′ from position i to f as: y′f = y′i + fd(s) with

fd(s) =

(Z0c
8π

) (eQL
E`

)
w̄′d0s2 . (39)

(Here w̄′d0 = w′d0 (Eq. 34) with ∆y0 averaged over the transverse bunch distribution

of ∆y0; in the case of a symmetric distribution like a Gaussian, w̄′d0 = w′d0 with

∆y0 = 0.)

Near the axis the inverse focal length (for a short, uniform bunch) is given by

f −1
q (s) = k2

q(s)L =
π3

256a4 Z0c
(eQL

E`

)
s2 . (40)
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The dipole kick transforms y′ from position i to f as: y′f = y′i + yc f −1
d (s) with (see

Eqs. 33, 34)

f −1
d (s) =

π3

128a4 Z0c
(eQL

E`

)
s2 . (41)

The projected emittance is defined by the second moments of the transverse

distribution, in thin lens approximation (i.e. it is assumed that the wake kicks only

affect x′ and y′ distributions). The y emittance is given by

ε2
y = σyyσy′y′ − σ

2
yy′ , (42)

where σyy = σ2
y is left unperturbed, and

σy′y′ = 〈(y′)2〉 − 〈y′〉2 , σyy′ = 〈yy′〉 − 〈y〉〈y′〉 (43)

(the equivalent equations hold also in x). The averaging is performed over a 2D

Gaussian distribution in transverse phase space and the uniform distribution in the

longitudinal dimension.

For example, with the beam offset by yc, the distribution in (y, y′) is given by

ρ(y, y′) =
1

2πεy
exp

[
−

1
2εy

(1 + α2
y

βy
(y − yc)2 + 2αyy′(y − yc) + βy

(
y′
)2

)]
, (44)

with αy, βy, the Twiss parameters at the dechirper. When the beam passes the

dechirper near the axis, y′ transforms from position i to f as (y is unchanged):

y′f = y′i + (y − yc) f −1
q (s) + yc f −1

d (s) . (45)

The distributions transform as

ρi(yi, y′i)dyi dy′i = ρ f (y f , y′f )dy f dy′f = ρi(yi, y′i)J(yi, y′i ; y f , y′f )dy f dy′f , (46)

with J(yi, y′i ; y f , y′f ) the Jacobian of the transformation. For the transformation of

Eq. 45, J = 1. Thus, the final value of 〈(y′)2〉 is given by

〈(y′)2〉 =
1
`

∫ `

0
ds

∫ ∞

−∞

dy
∫ ∞

−∞

dy′ (y′)2ρ
[
y, y′ − (y − yc) f −1

q (s) − yc f −1
d (s)

]
, (47)
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and similar for the other first and second moments of the final distribution. Per-

forming all the integrals needed for the emittance, we find, in general,(
εy

εy0

)
=

[
1 + β2

y

([
f −1
q

]2

rms
+

y2
c

σ2
y

[
f −1
d

]2

rms

)]1/2

, (48)

with the notation

[
f −1
q

]2

rms
=

∫
dsλ(s)

[
f −1
q (s)

]2
−

(∫
dsλ(s)

[
f −1
q (s)

])2

, (49)

where λ(s) is the longitudinal bunch distribution (here a uniform longitudinal dis-

tribution is not assumed). In the brackets of Eq. 48, after the 1, we see, respectively,

the quad and dipole wake contributions to the emittance growth. Note that αy does

not appear in the solution. The same equation holds for (εx/εx0) if we replace βy

with βx and remove the dipole contribution. For the uniform longitudinal distribu-

tion and with the beam near the axis, we obtain finally (using Eqs. 40, 41, 48)(
εy

εy0

)
=

1 +

(
π3

384
√

5

Z0c
a4

eQβyL`
E

)2 (
1 + 4

y2
c

σ2
y

)1/2

, (50)

Applying the parameters of Table I with yc = 0, we obtain projected emittance

growths due to just the quad wake: (ε/ε0) = 1.005 (1.14) in x (y). If we misalign the

beam vertically by yc = 25 µm, then (εy/εy0) = 1.53. These results are somewhat

larger than given in Ref. [6]; we attribute the discrepancy to the fact that the model

of the earlier report underestimates the wakes near the origin while our model over-

estimates them. Also, note that, for emittance growth, (εy−εy0)/εy0, small compared

to 1, the dipole contribution scales as βy/εy0.

Thick Lens Calculation

To this point, our emittance calculations have been thin lens calculations. For

the dechirper, the effective focusing strength due to the quad wake is given by (see
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Eq. 38)

kq(s) =

(
π3

256
Z0c

eQ
E`

)1/2 s
a2 . (51)

Using the parameters of Table I, we find that, at the tail of the bunch, kq(`)L = 0.39,

and one would think that the thin lens approximation may suffice. However, in order

to cancel the quad wake effect, a two-meter-long vertical dechirper is followed by a

two-meter-long horizontal one. In the thin lens approximation, a vertical quad next

to a horizontal quad will completely cancel the focusing and defocusing effects.

We perform here thick lens calculations with the proper spacing of the elements to

investigate how well the cancellation really works.

We consider the case with the beam centered on the axis. The quad wake, for

any slice position s, transforms just like a magnetic quadrupole (see e.g. Ref. [20]).

We can transform the initial beam ellipse properties in one plane, T0 = (β0, α0, γ0)T ,

with γ = (1 + α2)/β and superscript T means the transpose of a matrix, to the final

state, T f = R(s)T0R(s)T . Then the emittance growth

(
ε f /ε0

)
=

(
〈γ f 〉〈β f 〉 − 〈α f 〉

2
)1/2

, (52)

where 〈〉 means to numerically average (integrate) over s. Then, the same is re-

peated in the other plane.

The matrices for a thick lens focusing and defocusing quad are, respectively,

given by

R f =

 cos kqL sin kqL
kq

−kq sin kqL cos kqL

 , Rd =

 cosh kqL sinh kqL
kq

kq sinh kqL cosh kqL

 . (53)

We begin with a single two-meter, horizontal dechirper, where focusing occurs in

x and defocusing in y. For each of the three averages needed for the emittance

(see Eq. 52), we first analytically performed the matrix multiplications and, at the

end, numerically integrated over s. We find that, for the thick lens calculation,
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(ε/ε0) = 1.005 (1.19) in x (y), which represents in x nearly the same answer as the

thin lens result, and in y a 35% increase over the thin lens emittance growth.

To see how well the cancellation using the two dechirper sections works we

performed a thick lens calculation for the LCLS configuration, consisting of: (1) a

vertical 2-meter dechirper, (2) a 0.5 m drift, (3) a thin lens, horizontally focusing

quad (with a 7.7 m focal length), (4) another 0.5 m drift, followed by (5) a horizontal

2-meter dechirper. For this calculation we first multiplied the R(s) matrices of the

five components together, transformed to obtain the final Twiss parameters T f (s),

and then numerically averaged the Twiss parameters over s as described above. The

final result is that (ε/ε0) = 1.008 (1.12) in x (y). We see that by adding a second,

rotated dechirper we slightly increased the projected x emittance but, at the same

time, significantly reduced the y emittance.

ACCURACY

For the steady-state component of the wakes to well approximate the total wake,

the catch-up distance, zcu = a2/2σz, must be small compared to the structure length.

For the parameters of Table I, taking σz = `/(2
√

3) = 8.7 µm, zcu = 3 cm, and this

condition is clearly satisfied. This means that the longitudinal wake at the origin

that we have been using is correct. However, rather than being relatively constant,

the wake may already drop somewhat over the short distance of interest. In the

transverse case, the slope at the origin, as given by our model, is correct, but it may

also drop.

The original work on round [8], [9], and flat [10] corrugated structure wakes used

perturbation methods to obtain the wake functions, which were found to be well

approximated by a single cosine (single damped cosine) function in the round (flat)

case. The two assumptions for the validity of the results are that: (1) the depth to

period ratio of the corrugations is not small, h/p & 1 (see Fig. 1), and (2) h/a � 1.
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In practice, it is difficult to manufacture corrugation features that are smaller than

∼ 0.5 mm, and small half gaps a ∼ 1 mm are desirable because they result in a

strong dechirping effect; the result is that the validity conditions for the perturbation

methods tend not to be satisfied. For example, for the RadiaBeam/LCLS dechirper

with the nominal half gap, a = 0.7 mm, the ratio h/a = 0.7, which is not small.

In Ref. [7] A. Novokhatski performed numerical, time-domain studies of the

wakes in the RadiaBeam/LCLS dechirper and found that higher order modes can

add significantly to the wake near the origin. In Fig. 2 of that report, which gives

the (on-axis) bunch wake of a σz = 25 µm Gaussian bunch in the RadiaBeam/LCLS

dechirper with the half-gap a = 0.7, one sees a ∼ 25% initial amplitude drop

to a damped cosine (average) variation. To obtain accurate results for the Radia-

Beam/LCLS dechirper, one needs to run a numerical code, such as the time domain

code used in [7] or ECHO(2D) [12].

We have performed test runs with ECHO(2D) for the parameters of Table I,

using a Gaussian beam with rms length σz = 10 µm, and find good agreement in

longitudinal and quad bunch wakes with results presented in [7]. The bunch shape

in the LCLS is, however, nominally uniform. For a uniform bunch distribution of

length `, the loss factor can be obtained from

κ =
1
`2

∫ `

0
w(s)(` − s) ds , (54)

(and the equivalent equations hold for the kick factors).

In Table II we summarize the numerical [ECHO(2D)] results for the nominal

bunch length (` = 30 µm), as well as for a bunch of twice this length. We give

both the ratios of loss factors (κ)a/κ and the bunch wakes at the tail of the bunch

[Wλ(`)]a/Wλ(`); here, the numerator (denominator) gives the analytical (numerical)

result. In summary, for the nominal parameters of Table I (with the beam on the

axis), the analytical model appears to over-estimate the wakes by ∼ 20–30%; for

a bunch twice as long, the error increases by ∼ 10%. For shorter bunches, the
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agreement between the model and the numerical results will become better.

TABLE II. For bunches with a uniform longitudinal distribution of full length `, passing

through the RadiaBeam/LCLS dechirper on axis: ratio of the loss and quad kick factors for

the analytical model and the ECHO(2D) simulations. The dipole wake results are approxi-

mately the same as the quad ones. The half gap a = 0.7 mm.

` [µm] (κ)a/κ [Wλ(`)]a/Wλ(`) (κyq)a/κyq [Wλyq(`)]a/Wλyq(`)

30 1.21 1.27 1.28 1.34

60 1.31 1.40 1.42 1.51

CONCLUSIONS

We began with general expressions for the wakefields in a corrugated structure

dechiper with flat geometry, derived in [1]. We took the limits of short bunch

length and obtained simplified, approximate expressions for the longitudinal and

transverse wakefields, functions that are reasonably accurate for the type of bunch

lengths used in e.g. the LCLS. We then used these functions to obtain, for a short

bunch passing through a dechirper: the energy loss as function of gap, the trans-

verse kick as function of beam offset, the slice energy spread, and the emittance

growth of the beam. We performed a thick lens calculation of emittance growth

for the two-dechirper system applied to representative LCLS bunch and machine

parameters and found that the cancellation does indeed work; the final projected

emittance growth is modest: (ε/ε0) = 1.008 (1.12) in x (y).

We briefly investigated the accuracy of our model, and find that it overestimates

the wakes by ∼ 20–30% for the type of parameters considered in this study (in

particular, full bunch length ` = 30 µm and dechirper half-gap a = 0.7 mm and the

bunch on axis). For shorter bunches the model becomes more accurate.
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In the Appendix we perform a more accurate derivation of the general wake solu-

tion for the dechirper (the starting point of the main work of this report) than found

in Ref. [1]. We find that the results of [1] are valid provided that the bunch length

over half gap, σz/a, is small, which is indeed the parameter regime of interest.

Although in our example calculation the emittance increase was modest, and

the cancellation of emittance growth using the two dechirper sections was effective,

we would like to point out that large emittance growth is not far away in parameter

space, especially if the gap is decreased (note the a−4 dependence in Eq. 50). For ex-

ample, if in the example calculation above we reduce the energy from E = 6.6 GeV

to 4 GeV, and the half gap a = 0.7 mm to 0.5 mm, we find that kqL = 1.0. For this

example we obtain a large emttance growth for the full, two dechirper, thick lens

calculation: (ε/ε0) = 1.5 (2.5) in x (y).

Finally, we would like to emphasize that although we started with a surface

impedance, the surface impedance itself never is part of the solution. This means

that the results given here are valid not only for the corrugated pipe dechirper, but

rather for any structure with flat geometry where the impedance can be described

by a surface impedance. Such problems include the resistive wall, the shallow

corrugated structure (often used as a model for surface roughness), and a metallic

pipe lined with a thin dielectric layer. The only condition for their applicability is

that the bunch lengths of interest are small compared to the characteristic distance

of the problem.
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Appendix A: Derivation of the longitudinal impedance with the surface impedance

boundary conditions at parallel plates

We begin from Maxwell’s equations in which we assume that all quantities de-

pend on time and z as e−iωt+ikz with k = ω/c and make the Fourier transform over

x,

f̂ (q) =

∫ ∞

−∞

dx f (x)eiqx, f (x) =
1

2π

∫ ∞

−∞

dq f̂ (q)e−iqx, (A1)

where f denotes a component of the electromagnetic field. To simplify the notation,

in what follows, we drop the hats in the Fourier transformed components of the

electromagnetic field.

The trajectory of the driving particle has a zero horizontal offset, x = 0, but it

is offset in the vertical direction, y = y0. The current density corresponding to the

the driving particle in ω representation is jz = Iωδ(x)δ(y − y0)e−iωt+ikz where Iω is

the amplitude of the Fourier component of the current. The electromagnetic field
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generated by the driving particle satisfy the Maxwell equations in free space:

∂Ez

∂y
= −iqHz,

∂Hz

∂y
= iqEz,

Ex = Hy −
q
k

Ez,

Hx = −Ey −
q
k

Hz,

−iqEy −
∂Hy

∂y
= iHz

(
k +

q2

k

)
,

−iqHy +
∂Ey

∂y
= −iEz

(
k +

q2

k

)
+

4π
c

Iωδ(y − y0). (A2)

The last term on the right-hand side accounts for the current associated with the

particle. Given that the solution of these equation is proportional to the current

Iω, to simplify notation, below we set Iω = 1/2π; this makes the last term on the

right-hand side of the last equation in (A2) equal to 2δ(y − y0).

The Maxwell equations are supplemented by the boundary conditions at the up-

per and lower walls,

Ez|y=a = ζHx|y=a, Ex|y=a = −ζHz|y=a,

Ez|y=−a = −ζHx|y=−a, Ex|y=−a = ζHz|y=−a, (A3)

where ζ is the surface impedance. We seek Hy and Ey in the following form

Hy(y) = A1 cosh(q(y − y0)) + A2 sinh(q(y − y0)) + i sign(y − y0) sinh(q(y − y0)),

Ey(y) = B1 sinh(q(y − y0)) + B2 cosh(q(y − y0)) + sign(y − y0) cosh(q(y − y0)),

(A4)

where the terms with sign(y−y0) are due to the presence of the delta function source

in (A2) and the amplitudes A1, B1, A2 and B2 are arbitrary numbers. Substituting

these equations into the last equation of (A2) we find the longitudinal electric field

Ez =
iqk

k2 + q2 (iA1 + B1) cosh(q(y − y0)) +
iqk

k2 + q2 (iA2 + B2) sinh(q(y − y0)). (A5)
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Similarly, Ex, Ey and Hz can be expressed through A1, B1, A2 and B2 and the hyper-

bolic functions from the third, fourth and the fifth equations of (A2). After that the

amplitudes A1, B1, A2 and B2 can be found from the four boundary conditions (A3).

Substituting them in (A5) we obtain the following result,

Ez = ζkq
N
D

(A6)

where

N = −iζk2 sinh (q (2a − y − y0)) − iζk2 sinh (q (2a + y + y0))

+
(
ζ2 + 1

)
kq cosh (q (2a − y − y0)) − 2

(
1 − ζ2

)
kq cosh (q (y − y0))

+ kq cosh (q (2a + y + y0)) + ζ2kq cosh (q (2a + y + y0))

+ iζq2 sinh (q (2a − y − y0)) + iζq2 sinh (q (2a + y + y0)) (A7)

and

D =
(
sinh(2aq)

(
ζ2k2 − q2

)
+ 2iζkq cosh(2aq)

)
×

(
sinh(2aq)

(
k2 − ζ2q2

)
+ 2iζkq cosh(2aq)

)
. (A8)

The longitudinal impedance is related to Ez by the following formula

Zl = −
1
Iω

1
2π

∫ ∞

−∞

Ez(q)e−iqx = −

∫ ∞

−∞

Ez(q)e−iqx, (A9)

where in the last equality we recalled our assumption Iω = 1/2π. Substituting (A6)

into Eq. (A8) gives a general expression for the longitudinal impedance without

any assumption. The expression (8) that we use in the main body of this paper

is obtained from (A6) and (A8) if one takes into account that |ζ | � 1 and also

assumes q � k. The latter is justified for short bunches with σz � a. With these

assumptions, we can neglect the last three terms in Eq. (A7), replace 1±ζ2 → 1, and

neglect the term ζ2q2 in Eq. (A8). It is easy to check that with these modifications
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impedance (A8) is the same as Eq. (8).

[1] K. Bane and G. Stupakov, Phys. Rev. ST Accel. Beams 18, 034401 (Mar 2015), http:

//link.aps.org/doi/10.1103/PhysRevSTAB.18.034401.

[2] K. Bane and G. Stupakov, “Corrugated pipe as a beam dechirper," NIM A690 (2012)

106–110.

[3] P. Emma et al, Phys. Rev. Lett. 112 034801 (2014).

[4] P. Frigola, principal investigator, “RF-free chirp removal using longitudinal wake-

fields," US DOE FY 2014 Phase II SBIR Proposal, 2014.

[5] M. Guetg et al, “Commissioning of the Radiabeam/SLAC dechirper," abstract sub-

mitted to IPAC16, to be held in Busan, Korea, May 2016.

[6] Z. Zhang et al, Phys. Rev. ST Accel. Beams 18, 010702 (2015).

[7] A. Novokhatski, Phys. Rev. ST Accel. Beams 18, 104402 (2015).

[8] K. Bane and A. Novokhatski, SLAC Report No. LCLS-TN-99-1, 1999.

[9] K. Bane and G. Stupakov, “Impedance of a beam tube with small corrugations," Proc.

of Linac2000, Monterey, CA, 2000, p. 92–94.

[10] K. Bane and G. Stupakov, Phys. Rev. ST Accel. Beams 6, 024401 (2003).

[11] C.-K. Ng and K. Bane, “Wakefield computations for a corrugated pipe as a beam

dechirper for FEL applications," Proc. of NaPAC13, Pasadena, CA, 2013, p. 877–879.

[12] I. Zagorodnov et al, Phys. Rev. ST Accel. Beams 18, 104401 (2015).

[13] A. Lutman, private communication.

[14] S.S. Baturin, “Calculation of the Cherenkov fields in the cross-section of a short rela-

tivistic bunch," arXiv:1507.03901, July 2015.

[15] R. Klatt and T. Weiland, “Wakefield calculation with three-dimensional BCI code,"

Proc. of Linac 86, SLAC, 1986, p. 282–285.

[16] A. Chao, The physics of collective beam instabilities in high energy accelerators (John

26

http://link.aps.org/doi/10.1103/PhysRevSTAB.18.034401
http://link.aps.org/doi/10.1103/PhysRevSTAB.18.034401


Wiley & Sons, New York, 1993) Chapter 2.

[17] G. Stupakov, in Proc. 19th Advanced ICFA Beam Dynamics Workshop (Archidosso,

2000) p. 141.

[18] G. Stupakov, in Proc. IEEE Part. Acc. Conf., Dallas, TX, 1995, p. 3303.

[19] W.K.H. Panofsky and W. Wenzel, Rev. Sci. Instrum. 27 (1956) 967.

[20] A. Chao et al, editors, Handbook of Accelerator Physics and Engineering, 2nd Edi-

tion, (World Scientific, Singapore, 2012) p. 73.

27


	LCLSII_1601_title_page
	slac-pub-16457_modn
	Dechirper Wakefields for Short Bunches [1]Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515  
	Abstract
	Introduction
	Generalized wakefields for short bunches
	Longitudinal Wake
	Transverse Wake

	Wakes for beams with small transverse size
	Longitudinal Wake
	Slice Energy Spread
	Transverse Wake
	Emittance Growth
	Thick Lens Calculation

	Accuracy
	Conclusions
	Acknowledgements
	Derivation of the longitudinal impedance with the surface impedance boundary conditions at parallel plates
	References



