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A STUDY OF RESONANT EXCITATION OF LONGITUDINAL HOMS

IN THE CRYOMODULES OF LCLS-II
∗

K.L.F. Bane§ , C. Adolphsen, A. Chao, Z. Li, SLAC, Menlo Park, CA 94025, USA

INTRODUCTION

The Linac Coherent Light Source (LCLS) at SLAC, the

world’s first hard X-ray FEL, is being upgraded to the LCLS-

II. The major new feature will be the installation of 35 cry-

omodules (CMs) of TESLA-type, superconducting accel-

erating structures, to allow for high rep-rate operation. It

is envisioned that eventually the LCLS-II will be able to

deliver 300 pC, 1 kA pulses of beam at a rate of 1 MHz.

At a cavity temperature of 2 K, any heat generated (even

on the level of a few watts) is expensive to remove. In the last

linac of LCLS-II, L3—where the peak current is highest—

the power radiated by the bunches in the CMs is estimated

at 13.8 W (charge 300 pC option, rep rate 1 MHz) [1, 2].

But this calculation ignores resonances that can be excited

between the bunch frequency and higher order mode (HOM)

frequencies in the CMs, which in principle can greatly in-

crease this number. A. Sukhanov, et al, have addressed this

question for the LCLS-II in a calculation—where they make

assumptions, including a cavity-to-cavity mode frequency

variation (with rms 1 MHz)—to end up with a conservative

estimate of 10−3 probability of the beam losing an extra

watt (beyond the non-resonant 13.8 W) in a CM [3].

In the present work we look at the problem in a different

way, and calculate the multi-bunch wakefields excited in a

CM of LCLS-II, in order to estimate the probability of the

beam losing a given amount of power. Along the way, we find

some interesting properties of the resonant interaction. In

detail, we begin this report by finding the wakes experienced

by bunches far back in the bunch train. Then we present a

complementary approach that calculates the field amplitude

excited in steady-state by a train of bunches, and show that

the two approaches agree. Next we obtain the properties of

the 450 longitudinal HOMs that cover the range 3–5 GHz

in the CMs of LCLS-II, where we include the effects of the

inter-CM ceramic dampers. At the end we apply our method

using these modes. More details can be found in Ref. [4].

Selected beam and machine properties in L3 of LCLS-II,

some of which we use in calculations, are given in Table 1.

MULTI-BUNCH WAKE

Consider a train of equally spaced bunches, each with

charge q, moving at the speed of light c and exciting a cavity

longitudinal HOM defined by wavenumber k and loss factor

κ [= 1
4 ck(R/Q)]. If the quality factor Q is infinitely large,
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Table 1: Selected beam and machine properties in the LCLS-

II. Nominally the bunch charge is 100 pC, and the maximum

charge is 300 pC (but with the same peak current).

Parameter name Value Unit

Charge per bunch, q 300 pC

Beam current, I 1 kA

Full bunch length, ℓ 90 µm

Repetition rate, f0 1 MHz

Fundamental mode frequency, frf 1.3 GHz

TM0 cut-off frequency, fco 2.94 GHz

Non-resonant HOM power loss, Psb 13.8 W

Single bunch total loss factor, κsb 154. V/pC

the voltage loss of bunch n to the mode is given by

∆Vn = 2qκ

(

1

2
+

n−1
∑

n′=1

cos k(sn − sn′)

)

, (1)

where sn is position of bunch n within the train, with a larger

number representing a position further toward the back.

If the bunch spacing is an integer multiple of the mode

wavelength, then ∆V1 = qκ, ∆V2 = 3qκ, ..., ∆Vn =
2qκ(n− 1

2 ), which means that, on resonance, the loss grows

linearly with bunch number.

With finite (but large) Q, the loss at bunch n becomes

∆Vn = 2qκ

(

1

2
+

n−1
∑

n′=1

cos k(sn − sn′) e−
k(sn−s

n′ )

2Q

)

.

(2)

The terms in parenthesis—which we call the normalized

loss—can be written as

h(n) ≡ 1

2
+ Re

[

e−α 1 − e−(n−1)α

1 − e−α

]

, (3)

where Re(z) means take the real part of z; and α = ( 1
Q −

2i)πν, with the tune ν ≡ f/f0 = ck/(2πf0) and f0 is

the bunch frequency. For example, with f ≈ 4 GHz and

f0 = 1 MHz, the tune ν ≈ 4000. Note that h is normalized

so that for the case of no multi-bunch wake effect (the single

bunch case), h = 1
2 .

The LCLS-II bunch trains are very long (at f0 = 1 MHz

a million bunches pass by per second). For any mode with

finite Q the wake eventually settles to a steady-state solution.

[This happens for n ≫ 1/Re(α); with e.g. f = 4 GHz,

f0 = 1 MHz, Q = 107, this requires only that n ≫ 800.]

Thus we are here really interested in the limiting loss hlim ≡
limn→∞ h(n). Letting n → ∞ in Eq. 3, the normalized

loss can be written as (we drop the subscript)

h =
1

2

(

sinh x

cosh x − cos y

)

, (4)



with x = πν/Q and y = 2πν. We see that the loss is given

by a simple analytical expression. Also, note that cos y in

Eq. 4 only depends on the fractional part of the tune, νf , so

we can let y = 2πνf .

From the result, Eq. 4, we see that there are only two

parameters that give our limiting loss, h: (ν/Q) and νf .

The fractional part of the tune gives unique results only for

an interval of 0.5, so let us choose it to be in the interval

0 ≤ νf ≤ 1
2 . We note that when Q is small, h ≈ 1

2 and

we are left with the single bunch wake effect. However, for

Q → ∞ (and νf 6= 0), h → 0. Thus, in this case, the

multi-bunch wake effect acts as a kind of Landau damping,

where the wake loss experienced by the bunches is less than

the single bunch wake, and is, in fact, near zero!

In Fig. 1 we plot h as given by Eq. 4 as function of x
for several values of y. The small argument approximation

h = x
x2+y2 is also given by dashes, and we see that it agrees

well. The peak of h(x) is at x = y, and the peak value is

1/(2x). The limit of all curves for x → ∞ is 1
2 .
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Figure 1: Limiting loss h vs. x for values of y = 0, 0.1, 0.2.

STEADY-STATE FIELDS

An alternate approach for finding the resonant effect is to

consider the steady-state fields left in a mode in a CM by

the bunch train. Let us begin with the case Q = ∞. Let the

field for time t < 0 be given by

W (t < 0) = W0 cos(ωt + φ) , (5)

where ω = kc is the mode frequency. At t = 0 a bunch

passes by. For t > 0 the wake becomes

W (t > 0) = W0 cos(ωt + φ) − W1 cos(ωt) , (6)

where W1 (> 0) is the excitation by the passing bunch.

In steady state, the wake should repeat itself with a time

period Ts, the time spacing between bunches. This means

W0 cos[ω(t − Ts) + φ] = W0 cos(ωt + φ) − W1 cos(ωt) ,
(7)

for time t in the interval [0 < t < Ts]. Expanding into

cos(ωt+φ) and sin(ωt+φ) terms, and requiring each term

to vanish, we obtain the steady state conditions

W0 cos ωTs = W0 − W1 cos φ ,

W0 sin ωTs = −W1 sin φ . (8)

We are given W1, ω, Ts, and want to solve for W0, φ. The

solution is

W0 = − W1

2 sin ωTs

2

,

φ =
π

2
+

ωTs

2
. (9)

Note the resonance when ωTs = 2πn.

The bunch change in energy at each passage is given by

∆E = W0 cos φ − W1

2
, (10)

where a postive value indicates energy gain. Substituting

the solution, Eqs. 9, we obtain

∆E = 0 . (11)

All bunches lose the same amount of energy which is zero.

This is not a surprising result because when Q = ∞ there

is no energy loss anywhere.

Now let us consider the case of finite Q. When Q is finite,

the field, before the bunch arrives (for t < 0), becomes

W (t) = W0e−(ωt+φ)/2Q cos(ωt + φ) . (12)

At t = 0, a bunch passes by, and the fields become (for

t > 0)

W (t) = W0e−(ωt+φ)/2Q cos(ωt+φ)−W1e−ωt/2Q cos ωt .
(13)

At steady state the wake repeats itself with time period Ts.

This means that

W0e−[ω(t−Ts)+φ]/2Q cos[ω(t − Ts) + φ]

= W0e−(ωt+φ)/2Q cos(ωt + φ) − W1e−ωt/2Q cos ωt(14)

for t in the interval [0 < t < Ts].

Expanding into cos(ωt + φ) and sin(ωt + φ) terms, and

requiring each term to vanish, we obtain the steady state

conditions

zeξw cos w = z − eξφ cos φ ,

zeξw sin w = −eξφ sin φ , (15)

where ξ = 1/(2Q), w = ωTs, and z = W0/W1. We need

to solve for φ and z. The solution is

tan φ =
eξw sin w

eξw cos w − 1
,

z = − eξφ

√
e2ξw + 1 − 2eξw cos w

. (16)

Finally, we obtain the bunch energy change as it passes

through the cavity by computing

∆E = W0e−φ/2Q cos φ − W1

2
. (17)

Now if we substitute from Eqs. 16 and then make the corre-

spondence, −∆E/W1 = h, we arrive again at Eq. 4. Thus,

we see that both approaches—finding the wake far back in

the train or finding the steady-state field—yield the same

result, as they should.



HOMS IN THE LCLS-II CMS

The computer code ACE3P [5, 6] was used to calculate

450 longitudinal modes in the range of 3–5 GHz, obtaining

frequency f , loss factor κ = (ω/4)(R/Q), and Q. The

model was 2D, beginning with the second half of a CM, then

a ceramic absorber, and finally the first half of the following

CM (see Fig. 2).

Figure 2: Schematic of model used for the mode calculations

The ceramic absorber is meant to remove power in modes

above cut-off at 70 K, where it is cheaper to do so. The

ceramic is Ceradyne CA-137, with ǫ = 15 − 4i [7]. Other

lossy materials in the model are copper-plated bellows and

a drift pipe, both at 2 K. The boundary conditions were

E type (perfectly conducting walls); note, however, that

changing boundary conditions from E type to H type shifted

the frequencies slightly, but did not otherwise significantly

change the results. The beam pipe radius of the cavities is

3.9 cm, which gives a TM0 cut-off frequency of 2.94 GHz.

Thus the modes that we calculate will tend not to be trapped.

The numerically obtained mode properties are plotted

in Fig. 3. Shown are frequencies fm as function of mode

number, loss factors κm vs. frequency, and quality factor

Qm vs. frequency (in GHz), on a semi-log scale. With a CM

containing eight 9-cell cavities we expect to see bands of

approximately 72 mode length; from the top plot it appears

we see about 5 such bands. From the middle plot we note that

the bands with the strongest modes are one near 3.8 GHz and

another near 4.2 GHz. Note that the sum of all the loss factors

in our frequency range, κsum = 6.0 V/pC, representing

3.9% of the total single bunch loss, κsb. As for the Q’s, they

reach from very small numbers up to ∼ 108. We find that

the average 〈log10(Qn)〉 ≈ 5. The mode with the largest

loss factor—which we will call the strongest mode—has

f = 3.86 GHz, κ = 1.34 V/pC, and Q = 1×107 (indicated

by orange plotting symbols in the figures).

In Fig. 4 we present statistics of the modes in histograms:

density of modes, dn/df [GHz−1] vs. f [GHz] (top left),

loss factors κ [mV/(pC*CM)] (top right), Q’s (bottom

left), and real part of impedance Re(Z) [kΩ/CM] vs. f
[GHz] (bottom right). Lines give expected density of modes

and Re(Z). The density of modes estimate dn/df ≈
(2π/c2)NcAf , with number of cells in a CM, Nc = 72,

and cell cross-sectional area A = 92.9 cm2, agrees reason-

ably well with the numerical results. The impedance curve

was obtained from a time-domain, single bunch calculation

using a bunch with rms length of 50 µm [1,2]; although the

areas under the curves of the impedance plot roughly agree,

we see that the time-domain calculation does not capture the

(relatively) low frequency impedance behavior.

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

0 100 200 300 400

3.0

3.5

4.0

4.5

5.0

mode #

f
[G
H
z
]

●●●●●●●●●●
●
●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●

3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f [GHz]

κ[V/
(p
C
*C
M
)]

●

●

●●●●●●

●
●

●●●●●●●●●●●

●
●

●

●●●●●●●●

●
●
●

●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●

●

●
●
●
●
●
●
●

●

●
●
●
●
●
●

●
●●●
●
●
●
●
●
●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●●●
●
●●
●●
●
●
●
●●●

●
●

●●●●●●

●

●●●
●●●
●
●
●●●●●●●●
●
●
●
●
●●
●●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●
●●●

●

●●●●●●

●

●

●●●●●●●●●●
●
●
●
●
●●
●
●
●
●
●
●
●●●●●●●●●●●●

●
●
●
●
●
●
●●●●
●
●
●●●●●●●●●●●●

●
●
●
●
●●●
●

●
●
●
●
●
●
●
●

●●●●●●
●●

● ●

●●●●●●

● ●

●●●●●●●●●●●●●●●●
●
●●●●
●
●
●
●●●
●●●●
●●
●
●●●●●
●●

●

●●●●●
●●

●

●●●●●●
●

●

●●●●●●●●
●●●●●●●
●

●

●●●●●●

●

●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●
●●●●●
●
●
●
●
●●●

●

●
●
●●●●●

●

●
●●●
●●
●

●

●●●●●●●

●

●●●●●●

●

●●

3.0 3.5 4.0 4.5 5.0

1000

104

105

106

107

108

f [GHz] vs Q

Figure 3: Mode properties: frequencies fm (top), loss fac-

tors κm vs. fm (middle), and quality factors Qm vs. fm in

[GHz] (bottom). The strongest mode is shown in orange.

Figure 4: Statistics of modes: density of modes, dn/df
[GHz−1] vs. f [GHz] (top left), histogram of loss factors κ

[mV/(pC*CM)] (top right), histogram of Q’s (bottom left),

and Re(Z) [kΩ/CM] vs. f [GHz]. Lines gives expected

density of modes and Re(Z).



STRONGEST MODE

Let us begin by studying the wake effect of the strongest

mode. The frequency f ≈ 3.85694 GHz, the tune ν ≈ 3900
(assuming f0 = 1 MHz), and the fractional tune νf =
0.0579, yielding h = 0.009. Nominally, the wake effect

of this mode is damped. However, we know the HOM fre-

quency of the real CM only to an accuracy > 0.5 MHz

(see [8]). This means that we have no information about the

value of νf ! This further implies that we can only calculate

the resonance wake effect statistically, as a probability.

In Fig. 5 we plot h(νf ) for the strong mode (Q = 107);

we plot it on a semi-log plot since it is extremely spiked.

The red dot gives the nominal value, i.e. the one obtained

assuming that f , as given by ACE3P, is correct and exact;

it can be approximated by h = πν
2Q (1 − cos 2πνf )−1. The

peak value ĥ ≡ h(0) ≈ Q/(πν) = 820.

●●
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Figure 5: For the strongest mode, the normalized loss h as

function of fractional tune νf (assuming f0 = 1 MHz). The

red dot gives the nominal value.

It is interesting to study how the loss in the strongest mode

varies with Q, while keeping νf fixed at 0.0579. The plot

is shown in Fig. 6, with the nominal case given in red. For

low Q (Q . πν/2) the bunches communicate weakly, and

h ≈ 1
2 ; for large Q, such as the nominal case, h ≈ 0. The

peak is located at Q ≈ 1
2 ν/νf = 3.3 × 104, and has a value

of h ≈ (4πνf )−1 = 1.37. We see again that a higher Q can

lead to less loss.
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Figure 6: For strongest mode, where νf = 0.0579: the

growth factor h(Q) if we vary Q. The peak is at Q =
3.3 × 104. The nominal point is indicated in red.

Probabilities

Since we do not know the mode frequency accurately

enough, νf can be taken from a uniform distribution of

random numbers, and we can then find the probability of

having a loss of a certain size. We are interested in two types

of probabilities: the probability of likely outcomes, say the

50th, 75th, or 90th quantile, and the probability of hitting a

large, relatively unlikely resonant peak.

First, it is important to note that the average of h(νf ) as

given by Eq. 4 equals 1
2 . This means that the average effect

for many structures (or seeds in a Monte Carlo simulation)

is equal to the non-resonant wake effect. We will perform

such a Monte Carlo simulation in the next section, where

we consider the effect of many modes. However, to find the

probability of relative rare resonant growth it is worthwhile

to develop an analytical approach, too.

The probability of νf landing between νf and νf + dνf

can be written as

P(νf ) dνf = P(h) dh =
P(νf )

|dh/dνf | dh . (18)

Here P(νf ) = 2H(νf )H( 1
2 − νf ), the uniform distribution

[H(s) is the unit step function], and from Eq. 4 we find that

|dh/dνf |−1 =
(− cos y + cosh x)2

π sin y sinh x
, (19)

with x = πν/Q and y = 2πνf . For the strongest mode, we

plot in Fig. 7 the probability P(h). Note that the abscissa

only reaches to a maximum of ĥ = 820. The dashed curve is

P = 1
2π (πν/Q)1/2h−3/2 = (0.0056)h−3/2, which is seen

to be a good approximation away from the peak. Finally, to

find the (complimentary) cumulative probability of losing h
or more to this mode, we need to perform the integral

S(h) =

∫ ĥ

h

P(h′) dh′ . (20)

0.01 0.10 1 10 100 1000

10
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10
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0.01

1

 vs h

Figure 7: Probability P(h) for the strongest mode. The

dashed curve is the approximation P = (0.0056)h−3/2.

We saw that the total non-resonant loss of the beam in a

CM is 13.8 W. One question one might ask is, What is the

probability of losing a watt or more to the strong mode? For

1 W, the effective h in mode m is given by

h =
1

2

1

13.8

κsb

κm
, (21)



where κsb is total single bunch loss factor (see Table 1).

Here h = 4.1. Performing the integral in Eq. 20, we find

that the probability of losing ≥ 1 W to the strong mode is

S(h ≥ 4.1) = 0.55%.

ALL THE MODES

We can repeat the calculation of the probability of losing

one watt in a CM, but now including all 450 modes. For

a total 1 W power loss with many modes, we, in principle,

need to consider correlated probabilities between the modes.

However, since all the probabilities for the individual modes

to lose a watt are small, the correlated probabilities have even

smaller contributions. Thus, the total probability of losing

one watt when considering all the modes is just the sum

of the individual probabilities S(h) as obtained by Eq. 20,

using h according to Eq. 21.

For a mode to contribute to the probability of losing a

watt requires that ĥ > h, where h is given in Eq. 21; i.e.

that Qmκm/(νmκsb) > π/(2 · 13.8). Of all our modes

only 10 satisfy this condition, and all of these are in the

band near 3.8 GHz. The probability contribution of the

10 modes and their frequencies are shown in Fig. 8; the

strongest mode is indicated by the orange dot. The total

probability of losing power P ≥ 1 W to all the modes is the

sum of the contributions, or 2.9%.
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Figure 8: (Cumulative) probability S that loss is greater than

1 W, for the different modes. The orange dot indicates the

strongest mode, i.e. the mode with the largest loss factor κ.

Another way of obtaining probabilities is by perform-

ing Monte Carlo simulations. We have performed such a

simulation, calculating wtot = 2
∑

m hmκm/κsum for all

m = 450 modes, with νf generated from a uniform dis-

tribution of random numbers (see Fig. 9). Note that wtot

is normalized so that, for no resonance effect, one obtains

wtot = 1. The calculations were performed for 10k cases

(seeds). This calculation finds that S(P ≥ 1 W) = 3.5%;

considering that we are in the tail of the distribution, this

result is in reasonable agreement to the analytical result.

Finally, in Fig. 10, using the Monte Carlo results, we plot

the cumulative probability (1 −S) of losing power P or less

to the modes in the range 3–5 GHz. The non-resonant loss to

these modes is 0.55 W (the dashed line). We find that there
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Figure 9: Results for 10k cases (seeds), histogram of wtot =
2
∑

m hmκm/κsum for all m = 450 modes, with νf gen-

erated from random numbers, normalized so that for no

resonance effect, one obtains wtot = 1. Note: 600 values

are off-scale to the right.

is a 50% chance that a power equal to half the non-resonant

loss (or less) is lost, a 75% chance that 2
3 (or less) is lost,

and a 90% chance that an amount equal to the non-resonant

loss (or less) is lost. We see that it is much more likely that

the multi-bunch wake will reduce the power loss, compared

to the non-resonant wake effect, than it is to make it larger.

More results, including the study of the effects of errors in

bunch timing, bunch charge, and cavity frequencies will be

given in Ref. [4].
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Figure 10: Cumulative probability of losing power P or less

to the modes in the range 3–5 GHz. The non-resonant effect

alone is 0.55 W (the dashed line).
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