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Scattering in LCLS-II and loss rates on the collimators

There are four processes that we will consider: 1) elastic Coulomb scattering on the nucleus, 2)
bremsstrahlung off the atom, 3) elastic scattering off the atomic electrons, and 4) Thomson scattering
off thermal photons.   Processes 1 and 2 will be the largest effect while 3 and 4 are less accurate
corrections.  Throughout we will assume  >> 1 and  ~ 1.  Finally, we discuss the expected partial
pressures compared to the Nitrogen-equivalent pressure that most gauges measure.

1. Coulomb scattering - Nucleus:

The Born approximation with the Fermi-Thomas model for the atomic potential yields a differential
cross section of [1,3]:
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Where Z is the atomic number, r0 is the classical electron radius, q is the scattering angle and min is a
function of the atomic screening: min ~ Z1/3(mc/p) = Z1/3/192  with m the electron mass, p the
momentum, and  is the relativistic factor.  The maximum scattering angle is given by the maximum
momentum transfer due to the finite nuclear size and is max ~ 274/A1/3  where A is the atomic number;
in most cases, we can neglect max as it is large compared to the angles of interest.

We are interested in the number of particles scattered to large amplitude so they hit collimators.  The
collimator jaws are assumed to have half apertures of ax and ay in the horizontal and vertical planes.

Now at some location along the beamline, the rate of scattering into an X collimator is:
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Where R12 is the transport element from the scattering location to the collimator, cos  is the azimuthal
dependence on the scattering, and the absolute value appears because we assume two jaws located at
±ax.  We will further assume that the scattering angles are large compared to qmin and we’ll ignore qmax.
In this case, the expression reduces to:
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where ngas is the atomic gas density which, at 20°C, is roughly 3.2x1022 molecules/Torr/m3 and Nb is the
number of beam particles.  This expression (or the equivalent for the vertical) can be integrated along
the beamline to calculate the power on the collimator.



As an example, consider the Bypass line CXBP21 with a 4 GeV beam of 1.2 MW, a vacuum pressure of
1x10-7 Torr of CO (2 atoms/molecule, Z ~ 7), an average R12

2 = ½*300*400 m2 over 1000 meters, and ax
= 4mm  1.1W of beam hitting the collimator.  The expression is relatively large due to the large beta-
functions in the Bypass line and would be 10x smaller in a line with beta-functions of ~30 meters
assuming the collimator gaps are also scaled.  Finally, as discussed below in Section 3, the expression
above should be modified from Z2  Z(Z+1) to include the effect of the atomic electrons.

2. Bremsstrahlung – Nucleus and Atomic Electrons:

Next, we’ll calculate the effect of inelastic scattering with the beam gas that leads to bremsstrahlung.
We’ll only consider relatively soft collisions with emissions of a few % of the beam energy using the
complete screening model and only keeping the leading terms [2,3].  In this regime, the differential cross
section for scattering off the nucleus and atomic electrons is roughly:
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where the factor of 1.35 includes the effect of the atomic electrons,  is the fractional energy loss, and
is the fine structure constant.  To calculate the loss on the energy collimators which have an energy
aperture of ± E/E, we integrate along the beamline:
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This expression can be integrated along the beamline to find the total scattering.  Assuming a 3% energy
aperture after 2000 meters of Bypass line with the same pressure as above, the power on the collimator
would be a few mW and the bremsstrahlung sources can be ignored.

3. Atomic electrons – Elastic scattering:

Scattering events with atomic electrons result in both angular and energy transfer [4].  Assuming small
momentum transfers, the differential cross section is:
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where  is the relative energy loss and the scattering angle is  = sqrt( ) assuming  << 1.  The
scattering term is equivalent to changing Z  to Z(Z+1) in the Coulomb nuclear scattering rate described in
Section 1 above which is 10 ~ 15% increase in the scattering rates.

The energy loss due to the atomic electrons increases the power on the energy collimators by a few 10’s
of W and is negligible.



4. Thermal Photons [5]:

In the warm sections of the beamline, there will be a large number of thermal photons with which the
beam can scatter.  The density and distribution can be estimated from Planck’s Law for black-body
radiation:
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and the total number of photons per cubic meter is:  2x107 T3m-3 where T is in Kelvin.  At 300°K, the
photon density is comparable to the residual gas atomic density at a pressure of 10-8 Torr and the
average energy of the photons is ave = 2.7kT ~ 70 meV.  In the lab frame, the maximum scattering
energy change is equal to the energy of a backscattered photon which is:
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where E  is the photon energy and E  is the backscattered energy which is less than 0.5% of the 4 GeV
beam.  Similarly, the maximum angular deflection is given by the transverse momentum transfer in the
beam rest frame and is:
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corresponding to a 0.3 rad deflection.  The scattering rate is given by the Thomson cross-section
however, even in the worst case, these scattering events will not deflect the beam out of the energy or
transverse aperture and can be ignored.

5. Vacuum Pressure:

Typical Ultra-High Vacuum (UHV) is dominated by H2 and then has significant CO and traces of other
gasses while vacuum gauges measure N2-equivalent pressure.  The conversion between partial
pressures and N2-equivalent is described in Ref. [6].  The scattering calculations should be based on the
sum of the partial pressures for the different gas components.  The ‘Effective Pressure’ defined in Ref.
[7] provides an approximate evaluation of the weighted impact of the different gas species that is based
largely on bremsstrahlung.  Another model would be to base the effective pressure on the Coulomb
scattering, the more important source of scattering in the LCLS-II, however the simplest solution is to
perform the correct calculations based on partial pressures.  Examples of partial pressures and the gas
composition can be found in Ref. [6].
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