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Abstract
This technical note proposes a method for evaluating the emittance due to the time-dependent
kick of the RF couplers. The evaluation assumes the 3D coupler fields are known from an EM
code calculation and uses these fields to compute the emittance they produce. This note
considers the field components which give the beam a time-dependent dipole kick.
Expressions are given for the phase emittances of the transverse dipole field kicks and for the
longitudinal magnetic field of the coupler.

Introduction
Other approaches for computing the coupler emittance have been based upon the RF
properties of the coupler and have provided useful estimates of the coupler fields and their
effects on the beam quality. See for example, M. Dohlus et al. and V. Shemelin et al. In this
report the 3D field map produced by a design code such as Microwave Studio, etc. is integrated
in the equations of motion with some simplifying assumptions to give expressions for the
emittance due to the time-dependence of the coupler fields.

The Phase Dependent Emittance due to the Transverse Dipole Fields
The derivation begins with the 1-D relativistic equation of motion

= (ym) = e(Ey + yB, — 7B, (1)

Since the beam is traveling with constant velocity along the z-axis, then z = fc and y = fcy’
and the equation of motion becomes the paraxial ray equation,

yﬁzmczix’ = e{E, + pc(y'B, — B,)} (2)

Next assume the beam is rigid, that is, its transverse size is constant while it’s in the coupler
fields. Therefore y' = 0 and the B, term can be dropped. Also since the bunch is travelling at
constant velocity (for now ignore the longitudinal E-fields), time in the rf fields can be replaced
with é The RF fields are assumed to be

E(x,y,2,t) = E(x,y,2)sin(wt + ¢)

and
§(x, y,2,t) = B(x, v, z)cos(wt + ¢)
Making these changes and integrating Eq. (2) gives the transverse kick in the x-plane,
a . ’ . 2 2
f;x dz = AX'(x,y,¢) = W [f E.(x,y,2)sin (ﬁ—’;z + ¢) dz — Bc [ By(x,y,2)cos (B—Zz + ¢) dz] (3)

Here 1 is the rf wavelength and ¢ is the rf phase. In the analysis described below in the
summary section, these integrals should be done using the 3D field maps generated by the
engineering design codes such as ANSYS, Microwave studio, etc. used to design the coupler.
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Computing these integrals along the z-axis and over a range of (x,y) coordinates will quantify
how much the couplers degrade the beam quality and establish the usable aperture. The
summary section describes how the integrals around a circle in the (x,y) plane can be used to
obtain the dipole and quadrupole fields.

Given that the transverse coupler fields are rather smooth, single-valued functions they
can be characterized by their peak value and an effective length. The effective length for the
transverse electric field E, is defined to be

J Ex(x=0,y=0,2)dz
Ly, = = e (4)
b

And similarly for the effective length of the transverse magnetic field,

_ J By(x=0,y=0,z)dz
By, — eak
y p
By

L (5)

In this effective length model the field is represented by a constant peak value over the effective
length. Following this condition, the integrals of Eqn. (3) can be written as

, Lg, . (2 L 2
Ax' = yﬁ;;ncz {Efeak JyFx sin (ﬁ—jz + ¢>) dz — BcBL* Jy? cos (B—Zz + <;b) dz} (6)

Performing the integrals gives the x-angle kick due to the coupler E, and B, fields characterized
in terms of their effective lengths and peak fields,

EPeak [cosd) — cos <¢> + Z—ZLE,C)] - ﬁCBgeeak [Si" (¢ + %LBy) —sin ¢]}

Ax'(x,y, ¢) = 3

e
Bymc? E{
(7)

Another approach expresses the kick in terms of the beam’s transverse voltage gain, V,,
due to the coupler fields. In this case, the angle kick is related to a transverse voltage as,

Ax'(x,y,§) = 55 Vi (x,, ). 9)

The transverse voltage gain can be written as a complex quantity in which the real part is given
by the electric field

. (2 gl 2
ReVi(x,y,¢) = [ Ey(x,v,2) sin (ﬁ—’;z + ¢) dz = ;E}feak [cosq.') — cos (qb + B—ZLEx)] (10)
while the imaginary voltage is due to the magnetic field is
ImV,(x,y,¢) = — [ BcBy(x,y,2)cos (%Z + ¢) dz = —ﬁ BcBe" [sin (¢ + %LBy) —sin (p] (11)
Similar expressions can be written for the y-plane kicks.
A reasonable definition for the dipole-phase emittance due to the dipole kick is for a

initially collimated (zero divergence) beam with a transverse rms size of g, and a bunch rms
phase length or phase spread of oy is

Ex-dipotep (0,7, 8) = BYoxoy |1 0%' (6,3, )| = 0,04 5 |- Ve(x, 9) (12)
Notice that the normalized emittance doesn’t depend upon the beam energy, but only upon the
transverse voltage gain. This means an electron transiting a coupler at a higher energy gains
the same transverse voltage as a lower energy electron, and therefore gains the same emittance
increase. The coupler emittance gain at higher beam energy is lower because the beam size is
smaller at higher energy due to effects such as Landau damping.



Computing the derivative of the dipole kick with respect to the rf phase gives the
normalized, x-plane dipole-phase emittance as

BA
ex—dipole Ud) o mc2

EPeak (sm (qb + —LEx) sin ¢) BcBRe (cos (¢ + —LBy) — cos q§)| (13)
Here the peak fields and effective lengths are evaluated along the z-axis at x=0 and y=0.

Emittance due to the Longitudinal B-Field

The above discussion describes the phase emittance due to the dipole kicks of the coupler
transverse electric and magnetic fields. In addition to these angle kicks, there is the phase
emittance produced by the longitudinal magnetic field, B,, as well as the emittance of the
longitudinal electric field. Modeling a longitudinal E-field would require including the
acceleration term, y’, in the equation of motion. In this report the longitudinal E-field is
ignored and the phase emittance of the Bz-field is derived.

The phase emittance of an rf lens produced by a Bz-field can be written as

5,0 = Brotoy () (14)
Where fp, is the focal length of the B: lens which is given by
f—; = (Zﬁymc) [B (x,y, z)sm( z+ qb)] (15)

This expression is similar to those given above for the dipole kicks and can also be written in
terms of a peak field and effective length.

Taking the derivative of Eqn. (15) wrt the phase and using it in Eqn. (14) gives the
phase emittance of time-varying B.-field,

€p,6(%, Y, P) = é(zfnc) 20y | B,(x,y,2)*sin [2( z+ <;b)] (16)
Using the effective length model for the Bz-field, and assuming the integrals for B? and sin are
separable the emittance becomes

€5, = (L)Z g,?%(Bfeak)z%w [cos 2¢ — cos (% Lg, + 2¢)] (17)

2mece

Again as for the dipole kicks, the 3D field maps provide Bz(x,y,z) which is integrated along lines
of constant (x,y) to produce a 2D map of the phase emittance. This emittance should be added
in quadrature with the dipole kick emittances for the total emittance.

Phase Emittance due to Quadrupole Fields
For an electron travelling in electric and magnetic quadrupole fields the x- and y-plane
equations of motion are (Theory and Design of Charged Particle Beams by M. Reiser, p.113),

x"+xx=0 (18)
y'—xy=0 (19)
Where k depends upon whether the field is electric,
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Kp, = — (%)Osin((ut+¢) (20)

B2ymc?
or magnetic,

e

pymc

(%)0 cos(wt + ¢) (21)

KBy =

The quantity (%) is the gradient of the E, field over a distance a along the x-direction near the
0

nominal center at x=0, y=0. And (%) is the B, gradient in the x-direction. Details of how to
0

determine the gradients from the field map is described in the procedure section.

Adding the forces on an electron by the coupler’s electric and magnetic field gradients in
the x-plane equation of motion gives

x4 — [(%)0 sin(wt + ¢) — Bc (%)0 cos(wt + qb)] x=0 (22)

B2ymc?

. . z 2mc . . .
Again, since t = e and w = - this expression can be written as

Xt e [(%) sin (mz +¢) = pe(Z ) cos (mz +¢)] x=0 (23)

Integrating gives the kick of the quadrupole fields,

Ax' = —xm U;LEx(E— sm(ﬁlz+¢)dz — Bc fLBy (i) cos(:;z+¢) ]

(24)

Similar to the previous discussion on the dipole fields, it is assumed the beam is rigid with
constant the transverse size while it’s in the coupler fields. In the emittance calculation the
initial beam divergence is assumed to be zero. In addition an effective length model for the
fields is applied which constrains the integration limits to 0 <z < Lg, and 0 < z < L, over which

the field gradients have constant values of (%) and (%y) for the electric and magnetic fields,
0 0

respectively. With these assumptions the quadrupole kick is found to be

Ax' = x Ey:;wz ﬁ [(%)0 <Cos¢ — cos (% Lg, + ¢)) — Bc (BT:)O (sin (% LBy + ¢) — sin (l))] (25)

Since the kick angle has a linear dependence upon the beam’s displacement, x, the field

behaves as a lens,
Ax' = —% x (26)

Therefore the electric and magnetic field gradients in the x-direction focus the beam with an
optical power of

fx—:uad = — ﬁV:’lCZ i (%)0 <cos ¢ — cos (% Lg, + ¢)) — Bc (BT:)O (sin (% LBy + ¢>) — sin d))] (27)



Following the assumptions used earlier to obtain the dipole-phase emittance, the quadrupole-
phase emittance or the emittance due to the time dependent lensing of the field gradients can
be written as

d (1
Eq‘¢ = B]/O',?O'd, |E (;)| (28)
Inserting the derivative of the optical power gives

2 Ae

— Ex
Ex—quad,d) = Oy Ud) py—

(;)0 <cos ¢ — cos (% LEx + qb)) — Bc (BT:)O (sin (% LBy + qb) — sin ¢)‘ (29)

Summary of Coupler Field Analysis Procedure

Beginning with high-resolution, 3D field maps provided by the design codes such as microwave
studio, etc. various line integrals are taken though the 3D maps. The field maps are assumed
to be in Cartesian coordinates with the z-axis being the beam axis. Specifically these codes
provide the electric and magnetic field maps, E (x,y,z) and B (x,y,z) with sufficient resolution to
determine the dipole and quadrupole field components. This resolution will require a
numerical grid with approximately 0.1 mm spacing. And since the beam can be large, the
coupler field effects need to be quantified out to a minimum radius of 5 mm.

In the effective edge model the coupler fields are characterized by 24 parameters, 12

each of the electric and magnetic fields:

E E
peak X . peak y . peak
Ex ’ LEx ’ Ex,O ’ (;) ’ eEx,O' Ey , LEy , Ey,o; (;) , HEy,O , Ez , LEz
0 0

B B
peak X . peak Yy . peak
By , LBX ’ Bx,o ’ < a > ’ ng,O' By vLBy vBy,(): < a ) , 93y,0 ;B ’ LBZ
0 0

In the field analysis these parameters are extracted from the 3D Cartesian field maps, and then
used in expressions derived above to estimate the various emittance effects of the coupler
fields.
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