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INTRODUCTION

When a bunch passes through the undulator of LCLS-II, the wakefields

of the vacuum chamber will result in an added energy variation along the

bunch, one that can negatively impact the FEL performance. The wakefield

of the vacuum chamber is primarily due to the resistance of the walls and the

roughness of the surface. To minimize the impact of the wakes, one would like

a wall surface smooth enough so that the roughness component of the wake

is a small fraction of the total wake. In LCLS-I, with an undulator vacuum

chamber of the same material (aluminum) and roughly the same aperture as

proposed for LCLS-II, the wall roughness tolerance specified as an rms slope

of the surface of (y′)rms = 10–15 mr was difficult to achieve [1]. The goal

of this study is to understand the consequences to LCLS-II of loosening the

roughness specification, say by a factor of 2 to 30 mr.

The vacuum chamber within the undulator of LCLS-II will be primarily

extruded aluminum with a racetrack cross-section, as shown in Fig. 1 (in ad-

dition, there are short breaks at the quads that will have a different shape

and have a larger aperture). The full aperture is 5 mm by 12 mm, vertical

by horizontal. From an impedance point of view, with the beam on axis, the

effect is essentially the same as for the case of flat geometry, i.e. for a chamber

consisting of two parallel plates with a vertical separation of 5 mm.

In this note we begin with the round approximation, i.e. we consider an

aluminum pipe of radius a = 2.5 mm. We calculate the total wake effect

of resistive wall plus a model of roughness. The roughness model we use

consists of small, shallow, sinusoidal corrugations [2]. We choose this model

because measurements of samples of polished aluminum, similar to that to be

used in the undulator chamber, find that the typical measured roughness is

shallow [3]. Note that this model does not include a so-called “synchronous
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FIG. 1. Cross-section geometry of the undulator vacuum chamber.

mode” wake [4, 5]. Such a mode appears in the case of small deep corrugations

which are not expected for the LCLS II undulator.

The calculation of the short range wake of a resistive pipe has been done

before [6], as has the case of a pipe with small, shallow corrugations [7]; in this

report we properly combine the two effects. Besides the analytical calculation,

we present a simple way of estimating the relative contribution of the resistive

wall and roughness components on the induced energy variation in the LCLS-

II bunch. We next verify our analytical calculations with the 2D time-domain

wakefield program ECHO [8]. Finally, we perform the corresponding analytical

wake calculations for a vacuum chamber of flat geometry representing the

LCLS-II vacuum chamber for different amounts of roughness.

Selected beam and machine properties in the undulator region of LCLS-II

that are used in our calculations are given in Table I.
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TABLE I. Selected beam and machine properties in the undulator region of LCLS-

II that are used in our calculations. The bunch charge given here is the maximum

bunch charge to be used in LCLS-II. The longitudinal bunch distribution is approx-

imately uniform.

Parameter name Value Unit

Charge per bunch, Q 300 pC

Beam current, I 1 kA

Rms bunch length, σz 25 µm

Beam energy, E 4 GeV

Vacuum chamber half aperture, a 2.5 mm

Vacuum chamber length, L 130 m

ROUND VACUUM CHAMBER

Consider first a round chamber of radius a, with wall resistance and small

(in amplitude), shallow sinusoidal corrugations that represent the wall rough-

ness. While in some cases the beam impedance can be calculated as a sum

of the impedances due to resistance and that due to wall roughness, in gen-

eral case such summation of impedances is not correct. A more general ap-

proach is based on the concept of surface impedance [9] defined as the ratio

of the longitudinal electric field and the azimuthal magnetic field at the wall,

ζ = −(Ez/Z0Hφ)|r=a. Denoting ζrw(k) the wall resistive surface impedance

and ζro(k) the surface impedance due to roughness we can write the beam

impedance Z(k) as

Z(k) =
Z0

2πa

(
1

ζrw(k) + ζro(k)
− ika

2

)−1
, (1)
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with wave number k = ω/c, where ω is frequency and c is speed of light; and

with Z0 = 377 Ω. The resistive wall surface impedance ζrw(k), is given by [10]

ζrw(k) = (1− i)

√
k(1− ikcτc)

2Z0σc
, (2)

with σc the dc conductivity and τc the relaxation time of the metallic walls.

The roughness surface impedance term is given by [7]

ζro(k) =
1

4
kh2κ3/2

(√
2k + κ− i

√
2k − κ√

4k2 − κ2

)
; (3)

here the wall profile radius r is assumed to vary sinusoidally with longitudinal

position z: r = h cosκz. For the model to be valid we require the oscillations

to be small and shallow, i.e. κa � 1 and hκ � 1. Note that Eq. 1 implies

that at low frequencies the two contributions to the impedance simply add:

Z(k) ≈ Z0

2πa
[ζrw(k) + ζro(k)] (ka sufficiently small) ; (4)

however, as was pointed out above, in general this is not true. Once the

impedance is known, then the wake is obtained by the inverse Fourier trans-

form:

Wδ(s) =
c

2π

∫ ∞
−∞

Z(k)e−iksdk , (5)

with s the distance the test particle is behind the driving particle. Note that

in Ref. [7] further practical considerations for such a calculation as a contour

integral are discussed.

For the LCLS-II undulator vacuum chamber the dominant effect is expected

to be the resistive wall wake, with the roughness corrugations contributing to

a lesser degree. The strength of the resistive wall wake for a short bunch

depends on the characteristic distance

s0 =

(
2a2

Z0σc

)1/3

, (6)
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which represents a location near the first zero crossing of the point charge

wake. For aluminum the conductivity σc = 3.5 × 107 Ω−1m−1 and relaxation

time τc = 8 fs; with a = 2.5 mm, s0 = 9.8 µm. For very short bunches it is s0

rather than σ
−1/2
c that gives the scale of the strength of the wake in a bunch.

For the roughness model, the long range wake is given by [2]

Wδ(s) = − Z0c

16π3/2a

h2κ3/2

s3/2
= − c

4π3/2

√
Z0

(σc)ro

1

s3/2
, (7)

with the overall minus sign in the expression indicating that the test particle

gains energy from the leading particle1. This is the same s dependence as for

the long range resistive wall wake, and in the second expression on the right

we write the wake in terms of an equivalent roughness conductivity

(σc)ro =
16

Z0h4κ3
. (8)

Inserting this conductivity into Eq. 6, one obtains an effective roughness dis-

tance (s0)ro. Choosing λro = 2π/κ = 300 µm, (y′)rms = hκ/
√

2 = 30 mr, we

find that (σc)ro = 2.9 × 108 Ω−1m−1 and (s0)ro = 4.9 µm. We see that the

characteristic distance for this level of wall roughness is about half that of the

wall resistance.

We numerically performed the integral of Eq. 5, considering the effects of

the resistivity of aluminum, and the wall roughness with (y′)rms = 30 mr and

oscillation wavelength λro = 300 µm. In Fig. 2 we present ReZ(f) (top; f

is frequency) and the point charge wake Wδ(s) (bottom) for the case of a

pipe that has wall resistance (blue), roughness (red), and both resistance and

roughness (yellow). We see that the total effect is dominated by the resistive

wall wake, and it is not simply given by the sum of the two individual wakes.

We further note that Wδ(0
+) = Z0c/πa

2 = 5.8 MV/(nC m). The first zero-

crossing of the wakes is near s0 = 9.8 µm, (s0)ro = 4.9 µm, and (s0)tot = 12 µm,

1 We define the sign of the wake so that the positive wake corresponds to the energy gain.
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respectively, where the combined effect has been approximated by

(s0)tot =

(
1

σ
1/2
c

+
1

(σc)
1/2
ro

)−2
. (9)

In the undulator region of LCLS-II the longitudinal bunch distribution is

roughly uniform, with peak current I = 1 kA; the nominal bunch charge is

Q = 100 pC, with a maximum of Q = 300 pC possible. The bunch wake is

given by the convolution

Wλ(s) = −
∫ ∞
0

Wδ(s
′)λ(s− s′) ds′ , (10)

with λ(s) the longitudinal bunch distribution, and a negative value for Wλ(s)

indicates energy loss. For a uniform bunch distribution with peak current I

the relative wake induced energy variation at the end of the undulator is given

by

δw(s) = −eIL
cE

∫ s

0

Wδ(s
′) ds′ , (11)

with L the length of the undulator pipe and E the beam energy. In Fig. 3

we plot the relative induced voltage in a uniform bunch for the three cases of

Fig. 2. We see that for both the 100 pC bunch (total length of ` = 2
√

3σz =

30 µm) and the 100 pC bunch (` = 90 µm) the total energy variation induced

within the bunch is ∆δw = 0.36% for resistance plus roughness, vs. 0.30%

for resistance without roughness; the roughness adds a 20% effect. Since the

wake drops nearly linearly to zero near the effective s0, we can estimate these

numbers with the formula

∆δw =
Z0s̄0
2πa2

eIL

E
, (12)

where s̄0 = (s0)tot in the former case, or s̄0 = s0 in the latter one; which

gives ∆δw = 0.37% and 0.31% for, respectively, the case of roughness plus

resistance, and the case of resistance alone—in good agreement to the more

accurate calculations.
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FIG. 2. For round geometry: ReZ(f) (top) and point charge wake Wδ(s) (bottom)

for the case of a pipe that has resistance (blue), roughness (red), and both resis-

tance and roughness (green). The resistive wall calculation includes ac conductivity

for aluminum; the roughness model assumes (y′)rms = 30 mr and wall oscillation

wavelength λro = 300 µm.
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FIG. 3. For round geometry: relative induced voltage δw(s) along a bunch with

a uniform distribution, for the case of a pipe that has resistance (blue), roughness

(red), and both resistance and roughness (green). The resistive wall calculation

includes ac conductivity for aluminum; the roughness model assumes (y′)rms =

30 mr and wall oscillation wavelength λro = 300 µm. The beam has a uniform

distribution and with its head located at s = 0. The beam peak current I = 1 kA,

and the beam reaches to 30 (90) µm for the Q = 100 (300) pC case. The energy

E = 4 GeV, and the length of pipe L = 130 m.

NUMERICAL TESTS

We next present test calculations for the round geometry with the finite

difference wakefield code ECHO. This code can calculate the effects of both

geometric and resistive wall (dc only) wakes (provided that the skin depth is

small compared to the size of the wall perturbations). However, a sinusoidal

wall oscillation as small as e.g. (y′)rms = 30 mr on an a = 2.5 mm pipe is diffi-

cult to simulate, so we artificially enlarged the oscillations and reduced the wall
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conductivity. We consider two cases: (1) roughness alone and (2) roughness

plus wall resistance. Parameters are: a = 2.5 mm, λro = 2.5 mm, h = 60 µm,

pipe length L = 25 cm, wall conductivity σc = 6×105 Ω−1m−1; so s0 = 37 µm

and (y′)rms = 110 mr. The bunch is Gaussian with rms length σz = 60 µm

and the skin depth δs = 0.8 µm. The mesh size was taken to be 12 µm. For

analytical comparison to the ECHO results we inserted Eq. 1 into Eq. 5 to

find the point charge wake. This function was convolved according to Eq. 10

to obtain the bunch wake. The results are shown in Fig. 4. The ECHO results

are given by the solid curves, and the analytic results by dashes. We see good

agreement.

FIG. 4. Comparisons of bunch wake as obtained by ECHO (solid curves) and by

the analytical calculations (dashes) for two test examples: (1) a lossless, corrugated

pipe (blue), and (2) a lossy, corrugated pipe (red). The bunch shape λ is also shown,

with the head to the left.
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FLAT VACUUM CHAMBER

Henke and Napoly give the impedance of a resistive wall in flat geometry

in Ref. [11]. With a slight modification we include the effects of both the wall

resistance and roughness:

Z(k) =
Z0

2πa

∫ ∞
0

dq sech q

(
cosh q

ζrw(k) + ζro(k)
− ika

q
sinh q

)−1
. (13)

We have repeated the previous calculations for flat geometry, for cases of alu-

minum with ac conductivity and roughness with (y′)rms of: (1) 0 mr, (2) 15 mr,

(3) 30 mr, and (4) 45 mr (λro = 300 µm in all cases). The resulting impedances

are shown in Fig. 5 (top), the point charge wakes in Fig. 5 (bottom). We see

that, compared to the round case, W (0+) is reduced by the factor π2/16 and

the first zero crossing of the wake is increased slightly. Thus Eqs. 8, 9, and

12—with the last one multiplied by π2/16—can still be used to estimate the

relative impact of the roughness and the wall resistance.

In Fig. 6 we plot the relative induced energy variation for a uniform bunch

distribution. Here the peak current I = 1 kA; the bunch head is located at

s = 0, with the entire bunch extent reaching to 90 µm (for the Q = 300 pC

case), and to 30 µm (for the nominal Q = 100 pC case). The length of pipe is

assumed to be L = 130 m, and the beam energy E = 4 GeV. The total induced

relative energy variation for a resistive pipe with no roughness (for both the

100 pC and 300 pC cases) is ∆δw = 0.25%. Adding roughness increases this

value by 5%, 19%, 38%, when (y′)rms = 15, 30, 45 mr, respectively.

The roughness effect depends on (y′)rms and also on λro, though the latter

dependence is expected to be much weaker. Repeating the calculation for wall

resistance plus roughness with (y′)rms = 30 mr, but taking λro = 900 µm we

find that the roughness increases ∆δw by 27.5% compared to the effect of wall

resistance alone. This confirms that the dependence of ∆δw on λro is weak.
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FIG. 5. For flat geometry: ReZ(f) (top) and Wδ(s) (bottom) for the ac resistance

model of aluminum plus the effects of the roughness model, for the cases (y′)rms = 0,

15, 30, 45 mr. Here the wall oscillation wavelength λro = 300 µm.

The LCLS-II bunch distribution in the undulator is not exactly uniform

with peak current I = 1 kA (see Fig. 7, the yellow curves). The current,

numerically obtained 100 pC distribution has slight horns at the head and tail
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FIG. 6. For flat geometry: relative induced voltage δw(s) along the bunch, for

the cases wall resistance plus roughness, with (y′)rms = 0, 15, 30, 45 mr (the wall

oscillation wavelength λro = 300 µm). The beam has a uniform distribution with

its head located at s = 0. The peak current I = 1 kA, and the beam reaches to 30

(90) µm for the Q = 100 (300) pC case. The energy E = 4 GeV, and the length of

pipe is L = 130 m.

of the bunch, with a slight current droop in the middle; the 300 pC distribution

can be described as uniform in front with a long trailing tail. Repeating the

induced energy spread calculations with these distributions, both with wall

resistance alone and with resistance plus roughness with (y′)rms = 30 mr

(λro = 300 µm), we obtain δw(s) as given by the red and blue curves in Fig. 7.

It is interesting to note that, because the 300 pC bunch shape begins as a

uniform distribution, δw(s) quickly drops and rises back to near zero, similar

to the behavior in Fig. 6. For the 100 pC case, however, because of the horns

and droop, δw(s)—after reaching its minimum—remains flattened for most of

the rest of the bunch.
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FIG. 7. For flat geometry, relative induced voltage δw for numerically obtained

bunch shapes, for Q = 100 pC (top) and Q = 300 pC (bottom). The curves represent

the effect of ac resistivity in aluminum (red) and that of resistance plus roughness

with (y′)rms = 30 mr (blue). Here the wall oscillation wavelength λro = 300 µm.

The bunch shapes are given in yellow, with the head to the left.
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For these calculations, we find that ∆δw increases by 24% (19%) for Q =

100 pC (300 pC), comparing the case with roughness to the one without. These

results are not far from the 19% increase estimated above for the uniform

distribution. Finally, for completeness, we calculate the wakefield-induced

power loss in the undulator beam pipe: P = 〈Wλ〉Q2frep/L, where 〈〉 indicates

averaging over the bunch. We find that P = 2.1 (1.0) W/m for Q = 100

(300) pC, using the maximum planned repetition rate, frep = 300 (100) kHz.

CONCLUSIONS

We have investigated the wake effect of the wall resistance and roughness

of the undulator beam pipe on the LCLS-II beam. In particular we wanted to

see if it is acceptable to loosen the roughness tolerance from an equivalent rms

slope at the surface of (y′)rms = 15 mr to 30 mr. According to the calculations

presented here, such a loosening will result in the roughness contribution to

the induced voltage to increase from 5% to 20%. The absolute scale of the

total wake effect is a relative induced energy variation of ∼ 0.3% (assuming a

pipe length of 130 m and a beam energy of 4 GeV).

In this note, we have presented an analytical calculation of the wake in a

round or flat chamber with wall resistance and shallow, sinusoidal corrugations.

We have additionally shown that our analytical calculations of the short range

wake in such a chamber is in good agreement with results of the time domain,

finite difference program ECHO. Finally, we have presented a simple model

for estimating the extra effect of wall roughness on the wake of the beam in

the LCLS-II undulator chamber.
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