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Abstract 

This technical note proposes a method for evaluating the emittance due to the time-dependent 

kick of the RF couplers.  The evaluation assumes the 3D coupler fields are known from an EM 

code calculation and uses these fields to compute the emittance they produce.  This note 

considers the field components which give the beam a time-dependent dipole kick.  

Expressions are given for the phase emittances of the transverse dipole field kicks and for the 

longitudinal magnetic field of the coupler.   

 

Introduction 

Other approaches for computing the coupler emittance have been based upon the RF 

properties of the coupler and have provided useful estimates of the coupler fields and their 

effects on the beam quality.  See for example, M. Dohlus et al. and V. Shemelin et al.  In this 

report the 3D field map produced by a design code such as Microwave Studio, etc. is integrated 

in the equations of motion with some simplifying assumptions to give expressions for the 

emittance due to the time-dependence of the coupler fields. 

 

The Phase Dependent Emittance due to the Transverse Dipole Fields 

The derivation begins with the 1-D relativistic equation of motion 
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Since the beam is traveling with constant velocity along the z-axis, then  ̇     and  ̇        

and the equation of motion becomes the paraxial ray equation, 
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Next assume the beam is rigid, that is, its transverse size is constant while it’s in the coupler 

fields.  Therefore      and the    term can be dropped.  Also since the bunch is travelling at 

constant velocity (for now ignore the longitudinal E-fields), time in the rf fields can be replaced 

with  
 

  
.  The RF fields are assumed to be 
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Making these changes and integrating Eq. (2) gives the transverse kick in the x-plane, 
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Here   is the rf wavelength and   is the rf phase.   In the analysis described below in the 

summary section, these integrals should be done using the 3D field maps generated by the 

engineering design codes such as ANSYS, Microwave studio, etc. used to design the coupler.  
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Computing these integrals along the z-axis and over a range of (x,y) coordinates will quantify 

how much the couplers degrade the beam quality and establish the usable aperture.  The 

summary section describes how the integrals around a circle in the (x,y) plane can be used to 

obtain the dipole and quadrupole fields. 

 Given that the transverse coupler fields are rather smooth, single-valued functions they 

can be characterized by their peak value and an effective length.  The effective length for the 

transverse electric field    is defined to be 
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And similarly for the effective length of the transverse magnetic field,   
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In this effective length model the field is represented by a constant peak value over the effective 

length.  Following this condition, the integrals of Eqn. (3) can be written as 
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Performing the integrals gives the x-angle kick due to the coupler    and    fields characterized 

in terms of their effective lengths and peak fields, 
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 Another approach expresses the kick in terms of the beam’s transverse voltage gain,   , 

due to the coupler fields.  In this case, the angle kick is related to a transverse voltage as, 
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The transverse voltage gain can be written as a complex quantity in which the real part is given 

by the electric field 
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while the imaginary voltage is due to the magnetic field is 
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Similar expressions can be written for the y-plane kicks. 

 A reasonable definition for the dipole-phase emittance due to the dipole kick is for a 

initially collimated (zero divergence) beam with a transverse rms size of    and a bunch rms 

phase length or phase spread of    is 
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Notice that the normalized emittance doesn’t depend upon the beam energy, but only upon the 

transverse voltage gain.  This means an electron transiting a coupler at a higher energy gains 

the same transverse voltage as a lower energy electron, and therefore gains the same emittance 

increase.  The coupler emittance gain at higher beam energy is lower because the beam size is 

smaller at higher energy due to effects such as Landau damping. 
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 Computing the derivative of the dipole kick with respect to the rf phase gives the 

normalized, x-plane dipole-phase emittance as 
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Here the peak fields and effective lengths are evaluated along the z-axis at x=0 and y=0. 

 

Emittance due to the Longitudinal B-Field 

The above discussion describes the phase emittance due to the dipole kicks of the coupler 

transverse electric and magnetic fields.  In addition to these angle kicks, there is the phase 

emittance produced by the longitudinal magnetic field,   , as well as the emittance of the 

longitudinal electric field.  Modeling a longitudinal E-field would require including the 

acceleration term,   , in the equation of motion.  In this report the longitudinal E-field is 

ignored and the phase emittance of the Bz-field is derived. 

 The phase emittance of an rf lens produced by a Bz-field can be written as 
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Where    
 is the focal length of the Bz lens which is given by 
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This expression is similar to those given above for the dipole kicks and can also be written in 

terms of a peak field and effective length. 

 Taking the derivative of Eqn. (15) wrt the phase and using it in Eqn. (14) gives the 

phase emittance of time-varying Bz-field, 
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Using the effective length model for the Bz-field, and assuming the integrals for   
  and     are 

separable the emittance becomes 

     
 (

 

   
)
 

  
   (  

    
)
  

   
 [         (

  

  
   

   )]                       (17) 

 

Again as for the dipole kicks, the 3D field maps provide Bz(x,y,z) which is integrated along lines 

of constant (x,y) to produce a 2D map of the phase emittance.  This emittance should be added 

in quadrature with the dipole kick emittances for the total emittance. 

 

Phase Emittance due to Quadrupole Fields 

For an electron travelling in electric and magnetic quadrupole fields the x- and y-plane 

equations of motion are (Theory and Design of Charged Particle Beams by M.  Reiser, p.113), 
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Where   depends upon whether the field is electric, 
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or magnetic, 
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The quantity (
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 is the gradient of the    field over a distance   along the x-direction near the 

nominal center at x=0, y=0.  And (
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 is the    gradient in the x-direction.  Details of how to 

determine the gradients from the field map is described in the procedure section. 

 Adding the forces on an electron by the coupler’s electric and magnetic field gradients in 

the x-plane equation of motion gives 
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Again, since   
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, this expression can be written as 
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Integrating gives the kick of the quadrupole fields, 
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Similar to the previous discussion on the dipole fields, it is assumed the beam is rigid with 

constant the transverse size while it’s in the coupler fields.  In the emittance calculation the 

initial beam divergence is assumed to be zero.  In addition an effective length model for the 

fields is applied which constrains the integration limits to        
 and        

 over which 

the field gradients have constant values of (
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 for the electric and magnetic fields, 

respectively.  With these assumptions the quadrupole kick is found to be 
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Since the kick angle has a linear dependence upon the beam’s displacement,  , the field 

behaves as a lens, 
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Therefore the electric and magnetic field gradients in the x-direction focus the beam with an 

optical power of 
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Following the assumptions used earlier to obtain the dipole-phase emittance, the quadrupole-

phase emittance or the emittance due to the time dependent lensing of the field gradients can 

be written as 
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Inserting the derivative of the optical power gives 
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Summary of Coupler Field Analysis Procedure 

Beginning with high-resolution, 3D field maps provided by the design codes such as microwave 

studio, etc. various line integrals are taken though the 3D maps.  The field maps are assumed 

to be in Cartesian coordinates with the z-axis being the beam axis. Specifically these codes 

provide the electric and magnetic field maps,  ⃗ (     ) and  ⃗ (     ) with sufficient resolution to 

determine the dipole and quadrupole field components.   This resolution will require a 

numerical grid with approximately 0.1 mm spacing.  And since the beam can be large, the 

coupler field effects need to be quantified out to a minimum radius of 5 mm. 

 In the effective edge model the coupler fields are characterized by 24 parameters, 12 

each of the electric and magnetic fields: 
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In the field analysis these parameters are extracted from the 3D Cartesian field maps, and then 

used in expressions derived above to estimate the various emittance effects of the coupler 

fields.   
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