Operando X-ray Spectroscopy Studies of CO₂ Reduction Reaction Mechanism on Ni and Ni Alloy Catalysts <u>Maryam Farmand¹</u>, Jeremy Feaster², John Lin², Alan Landers², Jeffery Beeman¹, Thomas Jaramillo², Apurva Mehta³, Ryan Davis³ Junko Yano¹, Walter Drisdell¹

 ¹ Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Lab, Berkeley, CA
² Department of Chemical Engineering, Stanford University, Stanford, CA
³ Stanford Synchrotron Radiation Light Source, Menlo Park, CA

Operando Grazing incidence XAS and XRD at beamlines11-2 and 2-1 of SSRL is utilized to study the electrode-electrolyte interface on various transition metal and metal alloys as candidates for CO₂ reduction electro-catalysis. An in house designed 3D printed flow cell accommodates a thin layer of 300-micron electrolyte above the catalyst surface, thus enabling measurements in grazing incidence mode. Our operando GIXRD and GIXAS paint a picture of an evolving Ni surface, with slow reduction of surface oxide/hydroxide and changing crystal orientations.