Valence Electronic Structure of Fe-based Photosensitizers from Resonant Inelastic Soft and Hard X-ray Scattering

K. Kunnus¹, S. J. Titus², S. J. Lee², S. Koroidov¹, K. Hong¹, R. Ma¹, M. Reinhard¹, L. Li¹, K. Ledbetter¹, D. Nordlund², A. Cordones-Hahn¹, K. J. Gaffney^{1,2}

¹ Pulse Institute, SLAC/Stanford University, Menlo Park, USA ² SSRL, SLAC/Stanford University, Menlo Park, USA

Fe-based molecular photosenzitisers have gained considerable interest in recent years due to their potential to replace more expensive noble-metal analogues. In this contribution we have studied a series of $[Fe^{2+}(bpy)_N(CN)_{6-2N}]^{2N-4}$ (N=0 – 3) photoenzitiser complexes to understand the trends in metal to ligand charge transfer state lifetimes by studying their electronic structure with Fe L-edge and K-edge resonant inelastic X-ray scattering.