Time- and angle-resolved photoemission for Material Science

<u>A. Gauthier</u>^{1,2}, H. Soifer¹, S.-L. Yang^{1,2}, J. Sobota¹, C. Rotundu¹, H. Pfau¹, H. Xiong^{1,2}, P. Kirchmann¹, Z.-X. Shen^{1,2}

¹ Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA

² Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA

Time- and angle-resolved photoemission spectroscopy (trARPES) provides insight into time resolved band structures and unoccupied states. We will show two applications of this technique: (1) We use optical pulses to excite coherent phonons in the Bi₂Sr₂CaCu₂O₈ (Bi2212) lattice, and measure the resulting oscillations in electronic energy levels. Higher momentum electrons exhibit stronger electron-phonon coupling, consistent with an A_{1g} phonon mode. Such measurements have the potential to help determine the relationship between superconductivity and electron-phonon coupling in cuprates. (2) We use trARPES to measure unoccupied electronic states in the topological insulator Bi₂Se₃. Circularly-polarized optical pump pulses are shown to result in a net current in the unoccupied states. These currents are strongest at energies where a direct transition between occupied and unoccupied states is possible.