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� Synchronization: accelerate convergence rate by propagating 
long range (phase) information. Especially with large data.
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Readily it s closed form of the corresponding proximal mapping is given
direct ly as
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if 2ز (0, 1). More other elaborate met rics can be found [55,8] and refer-
ences therein.

F ig. 1. Ptychographic phase ret rieval (Far-¿eld): A stack of phaseless data f j := a2
j is

collected, with w being the localized coherent probe, and u being the image of interest
(sample). The white dots represent the scanning lat t ice points, with D ist denot ing the
sliding distance between centers of two adjacent frames.

3 Fast it erat ive algor it hms

In this sect ion, the main iterat ive algorithms for BPR will be int roduced.
Note that each algorithm may be designed originally for a speci¿c case
of (6). Hence the basic idea based on the original case will be explained
¿rst , and the possible extensions to other cases will be discussed then.

3.1 A lt er nat ing pr oject ion (A P) algor i t hms

First consider BPR de¿ned in (7) in the case of convent ion ptychography.

Ptychography is an experimental technique whereby one 
acquires coherent diffraction patterns from overlapping 
regions of a sample.

Scattering and redundancy (provided by overlapping 
regions) has enabled the highest resolution x-ray and 
electron microscopes in the world. The typical algorithm 
is based on (alternating) projections (Pmodel and Pdata):
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However, at each iteration a frame communicates only 
with neighboring frames, therefore long range (phase) 
information takes many iterations to propagate. 
Therefore, convergence rate drops with data size 
(Fig1.)

To change this scaling behavior, we explore a graph-
Laplacian technique. It relies on the relationships between 
overlapping pairs of frames which form a graph:

This technique relies on the fast computation of the 
Gramian matrix formed by a specialized inner product 
between all pairs of frames. The inner product 
considers the shifts among frames, the illumination and a 
normalization factor to account for the degree of 
redundancy. The high-performance operation can also (1) 
reduce communication in a distributed computing system 
and (2) help deal with slow fluctuations of experimental 
parameters such as drifts which are inevitable when 
dealing with extreme spans of length scales (from atomic 
to macroscopic).
Once the Gramian is computed, one can exploit an 
algorithm similar to Pagerank of Google fame, enabling 
extreme scaling.

Overlapping frames 
are related to each 
other by a shift and 
an illumination

replace 
amplitudes

normalize

Combine: coherent 
diffractive imaging 
with scanning probe 
microscopy

The (synchronization) Optimization Problem
Solve the following optimization problem with respect to frame-wise phase:

� The solution to this problem assuming constant    is the eigenvector 
corresponding to the largest eigenvalue of the sparse matrix H.

� The k × k matrix H is computed by performing the scalar 
product between every pair of overlapping frames.

Numerical Results

� The trade-off between Time and Convergence rate.
� Time/Iterations to reach the same level of accuracy.

� Trade-off between the Eigen-solver accuracy, Time and 
Convergence 

Phase synchronization:
Suppose we reconstruct frames independently; they will have a phase 
difference between them ; How do we correct for this?

equivalent
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Flowchart for CUDA Kernel: Gramian_calculator
Initialization:

Each block handles a pair of overlapping frames
Each thread handles pairs of overlapping pixels of the frames

Parallel Loop through Overlapping Pixels within a pair of frames:
  Calculate offset
  For each overlapping pixel within the integration width and height:

    Sum up the value to the dot product based on frames, illumination, and 
normalization data.

Block-Wise Summation:  CUB BlockReduce to compute the block-wide sum
Hermitian Property Handling:

For entries for frames overlapping with itself, set the sum to be real value
Fill values to the upper triangular part of H

Output Assignment:
Store the sums in global memory
Use the Hermitian property to fill the lower triangular part of H

Fig 1.1 Convergence plots for different Num of frames. Left to Right Num of Frames: 
8x8,16x16,32x32,64x64

Fig 1.2 Reconstruction plots with Error |image-truth|/|truth| for different Num of frames. Left to 
Right Num of Frames : 8x8,16x16,32x32,64x64

Number of 
Frames

No Sync
Clock Time

Iterations Sync
Clock Time

Iterations Sync 
every 5
Clock Tim
e

Iterati
ons

Accuracy
\eps_0^2

8x8 0.59s 95 0.86s 38 0.26s 58 1e-04

16x16 0.91s 407 0.94s 44 0.40s 90 1e-04

32x32 2.23s 1625 0.98s 44 0.54s 110 1e-04

64x64 7.67s 6465 0.92s 44 0.51s 120 1e-04

Note: Sync: Synchronize after every model and data fitting steps
     Sync every 5: Synchronize after every 5 iterations of model and data fitting
     Use 200 power iteration for Eigensolver

Fig 2.1 Reconstruction plots for 64x64 num of frames for different synchronization frequencies

# of 
Power
Iter

# of 
Frame
s

100

% of time/
Total Time

Iter 50

% of time
/Total Tim
e

Iter 10

% of time
/Total Tim
e

Iter 1

% of time/
Total Tim
e

Iter Accur-
acy

8x8 91.7% of 
0.342s

38 85.6% 
of 
0.204s

38 58.4% of 
0.095s

38 23.9% of 
0.333s

56 1e-04

16x1
6

95.5% of 
0.376s

41 85.3% 
of 
0.224s

41 58.2% of 
0.130s

51 23.3% of 
0.639s

211 1e-04

32x3
2

91.6% of 
0.388s

44 85.0% 
of 
0.239s

45 58.3% of 
0.365s

194 23.5% of 
1.639s

820 1e-04

64x6
4

91.8% 
of 0.445s

49 85.7% 
of 
1.311s

245 58.1% of 
2.261s

758 22.4% of 
7.04s

324
0

1e-04

Note:
# of Power Iter: number of power iteration steps used to calculate the largest eigen value of 
H;Synchronize is applied every AP step; The frame size is fixed at 16x16 pixels. If use 
more balanced frame size and # of frames, the percentage of time for eigensolver would 
be smaller

Conclusions

Fig 3.1 Convergence plots for different number of power iteration steps per eigen-solve . 
Left to Right Num of Frames: 8x8,16x16,32x32,64x64

Reference: Marchesini, S., Schirotzek, A., Yang, C., Wu, H., & Maia, 
F. (2013). Augmented projections for ptychographic imaging. Inverse 
Problems, 29(11), 115009. https://doi.org/10.1088/0266-
5611/29/11/115009

� Notation

Example of an experiment output
Geometry: img size: (637, 637) frames: (32, 32, 16384). Iteration setup: 100 AP 
iterations, sync after each data/model fitting, 100 power iteration used for the eigen-
solver for each synchronization.

Left to Right: 1. Reconstruction is visually identical to the truth. 2. Convergence Rate plot 3. Time 
for operations. Total Time: 4.36s

Conclusion and future work
1. Developed cuda kernel to achieve fast computation of the Gramian, which 

was the most time-consuming part of  the synchronization strategy
2. Tested different eigen-solvers and synchronization frequency
3. Achieved improved scaling performance over large datasets
4. For high level of noise, long range phase information (~100x 

larger than the probe) is lost regardless of the algorithm.
Future work: The high-performance kernel can also
1. Reduce communication in a distributed computing system.
2. Deal with slow fluctuations of experimental parameters such as 

drifts which are inevitable when dealing with extreme spans of 
length scales
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