

Ptychography at extreme scales: NATIONAL ACCELERATOR Maging macroscopic samples at (near) atomic resolution_

By: Yuan Ni (UC Davis Math Dept.), Stefano Marchesini (SLAC)

Fig 2.1 Reconstruction plots for 64x64 num of frames for different synchronization frequencies

for operations. Total Time: 4.36s

	(-									
oblem											
ASE: Frames after fitting the data											
pal											
$z_{(i)}^{*(l)}Q_{i-1} Q_{(i)}^{*(l)}z_{(i)}^{(l)}$											
$H_{i,j}^{(l)} := \frac{(l)}{\ \mathbf{z}_{(i)}\ } \frac{1}{Q^*Q} \frac{(l)}{\ \mathbf{z}_{(j)}\ }$		E									
Adjust shift between frames and their respective illuminationsNormalize by total exposureNormalize by total 		F									
atrix H is computed by performing the scalar											
ween every pair of overlapping frames.											
to this problem assuming constant wis the eigenvector											

of ower er	100	lter	50	lter	10	lter	1	lter	Accur- acy
of ame	% of time/ Total Time		% of time /Total Tim e		% of time /Total Tim e		% of time/ Total Tim e		
(8	91.7% of 0.342s	38	85.6% of 0.204s	38	58.4% of 0.095s	38	23.9% of 0.333s	56	1e-04
Sx1	95.5% of 0.376s	41	85.3% of 0.224s	41	58.2% of 0.130s	51	23.3% of 0.639s	211	1e-04
2x3	91.6% of 0.388s	44	85.0% of 0.239s	45	58.3% of 0.365s	194	23.5% of 1.639s	820	1e-04
lx6	91.8% of 0.445s	49	85.7% of	245	58.1% of 2.261s	758	22.4% of 7.04s	324 0	1e-04

Initialization: Calculate offset

For each overlapping pixel within the integration width and height: Sum up the value to the dot product based on frames, illumination, and normalization data. Block-Wise Summation: CUB BlockReduce to compute the block-wide sum Hermitian Property Handling:

For entries for frames overlapping with itself, set the sum to be real value Fill values to the upper triangular part of H

Output Assignment: Store the sums in global memory Use the Hermitian property to fill the lower triangular part of H

Conclusion and future work length scales

LCLS, SLAC, U.S. DOE, NSF GRFP.,

Reference: Marchesini, S., Schirotzek, A., Yang, C., Wu, H., & Maia, F. (2013). Augmented projections for ptychographic imaging. *Inverse* Problems, 29(11), 115009. <u>https://doi.org/10.1088/0266-</u> 5611/29/11/115009

Gramian matrix:

Find largest eigenvalue:

 $z_1 = \xi_{1,2} z_2$

constant $\mathcal{H}_{(i,j)} = \langle oldsymbol{z}_i oldsymbol{z}_j
angle$

 $\max_{\boldsymbol{\xi}} \boldsymbol{\xi}^{*} \left(\mathcal{H}
ight) \boldsymbol{\xi}$

Flowchart for CUDA Kernel: Gramian_calculator

maximize product

Normalize the inner

product

Each block handles a pair of overlapping frames

Each thread handles pairs of overlapping pixels of the frames

Parallel Loop through Overlapping Pixels within a pair of frames:

Conclusions

Developed cuda kernel to achieve fast computation of the Gramian, which was the most time-consuming part of the synchronization strategy Tested different eigen-solvers and synchronization frequency Achieved improved scaling performance over large datasets For high level of noise, long range phase information (~100x larger than the probe) is lost regardless of the algorithm. **Future work:** The high-performance kernel can also Reduce communication in a distributed computing system. Deal with slow fluctuations of experimental parameters such as drifts which are inevitable when dealing with extreme spans of

Acknowledgments

Special thanks to my mentor Stefano Marchesini.