Anti-Gravity

SHAC Maticuld Protein Crystal for SFX

Viet Tran ${ }^{1}$, Raymond G Sierra+
1.Howard University, 2400 Sixth St NW, Washington, DC 20059
${ }^{2}$ Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

Theory
1. Reynold's number
$\mathbf{R e}=\frac{\text { puL }}{\boldsymbol{\mu}}=\frac{u L}{\nu}<1 \rightarrow$ Stoke's flow

2. Brownian Motion

Random motion of particles suspended in a fluid resulting from their collision with the fast-moving molecules in the fluid
3. Stoke-Einstein Equation

$$
D=\frac{k_{\mathrm{B}} T}{6 \pi \eta r_{\mathrm{h}}} \quad \square^{\text {Drag force }=\text { Buoyancy }} 6 \pi \mu a \mathbf{U}=\frac{4}{3} \pi a^{3}\left(\rho-\rho_{\mathrm{fl}}\right) \mathbf{g}
$$

Terminal Velocity: $\mathrm{U}=\frac{2}{9} \frac{a^{2}}{\nu}\left(\frac{\rho}{\rho_{\mathrm{fl}}}-1\right) \mathrm{g}$

Experimental results of 180° rotation using lysozyme
2. Rotation of 360° without rest time:

- Simulation indicates sedimentation of crystals
- Experiments demonstrate that not only
protein sample will not settle, this rotation can
- Experiments demonstrate that not only
protein sample will not settle, this rotation can actually resuspend settled solution.

Simulation result of 360 rotation

$$
\mathrm{t}=0 \mathrm{~s} \text { (settled) }
$$

$\mathrm{t}=60 \mathrm{~s}$
$\mathrm{t}=350 \mathrm{~s}$
$\mathrm{t}=630 \mathrm{~s}$

$=\underset{(33 \mathrm{~h})}{118800 \mathrm{~s}}$

Conclusions

- Rotation of 360° is capable of resuspending sedimented sample; verify efficacy during actual beamtime is needed
- Future projects include simulation and experiments of rotation of 225° with resting time, particle interactions, 3D modeling and different samples and liquids, heterogenous mixtures
- Leverage other physics, such as centripetal forces or acoustic levitation

Acknowledgments

Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-ACO276SF00515.

