
 

 

LSTM takes a sequence of shadows as 
input and updates its internal state after 
each element in the sequence.
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Cryo EM constructs 3D models from the 
shadows of the sample.

Fig. 1 Data analysis pipeline for Cryo EM
Picture Credits: Creative Biostructure, Medium, 2018

Learning Orientation

The next step would be for the VAE to 
output orientation given the shadow, and 
with a more complicated sample.
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A common problem for neural networks is 
their large number of parameters. A way 
to combat this issue is to represent them 
by their tensor decomposition, e.g. finding 
the CPD of their layers.

Gimbal lock occurs for Euler angles when 
two axis become aligned and a degree of 
freedom is lost, resulting in “flips.”

Fig. 7 Flipped reconstructed image (right) 

Quaternions are unique (to a negative sign) 
and are better than Euler angles, so they 
would be a future implementation.

Fig. 4 My VAE model, conditioned on Euler 
angles, with latent space of size 15 and a 
LSTM before sampling from the normal 
distribution (to create variance in decoding).

 

Variational AutoEncoders (VAE)
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Fig. 8 CPD is a sum of outer products.
Picture Credits: Turgutlu, Medium, 2018

Fig. 2 We want the label 
of a number given the 

image. Latent clustering 
shows that labels 

aggregate in latent 
space.
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Fig. 5 An unfurled LSTM is like consecutive 
dense layers. LSTM allows for a stronger 

connection between orientations. 
Choy et al., 3D-R2N2, Stanford University, 2016 
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Fig. 3 Variations in a 
digit uncovered by 

conditional VAE as a 
function of latent 

dimensions 

Can VAE’s
learn rotations?
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Fig. 6 Lambert projection of Euler angles 
(left) and variations of the ‘F’ dataset (right)

The MNIST dataset is a set of written numbers

VAE Model: Encoder   Latent Space   Decoder

My project focused on learning 
orientation via a type of neural network 
called a conditional variational 
autoencoder.


