
Ram Hari Dahal1, Bruce Hill2

Introduction

Conclusions

Acknowledgments

Research

Optimizing Pulnix TM4200CL camera timing for 

120Hz operation, and Developing a PyDM 

camera viewer application

1Electrical Engineering and Computer Science, Howard University, 2300 Sixth St NW, Washington, DC, 20059, USA

2Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

+Contact: dahal01@slac.stanford.edu, bhill@slac.stanford.edu

Date: 08/03/2018

The Pulnix TM-4200CL camera
(ptm4200) is used in many places from the
accelerator to the photon experimental
hutches. Typical use is for alignment and
analysis of beam position and footprint.
The resolution is 2048x2048 with 12 bit
pixels resulting in an 8.4MB image size.
The readout is over a parallel interface
called Camera Link, which provides a
predictable transmission time per image
based on the number of pixels in the image
and the Camera Link clock speed.

Max frame rate for the ptm4200 in full
resolution is 15 Hz, and since LCLS rates
jump from 10 Hz to 30 Hz, it is typically
operated in full resolution at 10 Hz, and
the synchronization of image to beam
pulseID has been easy. Operation of the
ptm4200 at 120Hz with a reduced region
of interest (ROI) of 256x2048 should be
possible in order to capture pulse by pulse
beam footprints, but has proven unreliable
due to inaccurate estimates of CamLink
transmission time for smaller ROI.

The goal for this part of the project was to
conduct timing tests and modify the
original formula for calculating CamLink
transmission time derived from the vendor
documentation in order to achieve +- 2ms
accuracy from 8 lines to the full 2048
lines. Only the vertical ROI was varied as
the ptm4200 does not support horizontal
ROI. The conclusion of this part of the
project includes a presentation of the
results, committing the revised formula to
version control and building a new release
of the ptm4200 device support module.

PyDM (Python Display Manager) is a
PyQt-based framework for building user
interfaces for control systems. The goal is
to provide a no-code, drag-and-drop
system to make simple screens, as well as a
straightforward python framework to build
complex applications.

PyDM Camviewer is an application/tool
built using pydm which allows the user to
pass a configuration file (with a list of
Camera names, Image address, and
Camera Description) to view the camera
image in real time and see the real time
stats.

Keywords: pulnix, timing, camlink
transmission, pydm, camviewer

While there were several roadblocks while doing
the projects including the steep learning curve
to understand the technology used and the
codebase, and several network issues that made
it harder to perform the timing tests, I was able
to come up with a better algorithm to predict
the expected camlink transmit time for Pulnix
TM4200CL camera, and also work on
camviewer application that can do amazing
stuff.

For the future work, I would want to make the
PyDM camviewer application have more
features and make it bug-free. Currently, the
application has some issues with automatically
resizing into any display size. There is also a
problem that causes the application to crash
when the .cfg file has an invalid image address.

Fig. The User Interface of the PyDM camera
viewer application that shows the image viewer,
camera chooser, camera ROI and camera view
stats, display options, zoom options, etc.

I want to thank my mentor Bruce Hill, manager

Ernest Williams, and co-mentor Hugo Slepicka
for guiding me throughout the project.

Use of the Linac Coherent Light Source (LCLS),
SLAC National Accelerator Laboratory, is

supported by the U.S. Department of Energy,

Office of Science, Office of Basic Energy Sciences
under Contract No. DE-AC02-76SF00515.

For the Pulnix TM-4200CL camera, the CamLink
XmitTime was previously calculated using the
formula: XmitTime=

Here, MinY_RBV is the minimum pixel line
value where the image starts from and
SizeY_RBV is the size of the image starting from
MinY_RBV.
So, for example, if MinY_RBV=0, and
SizeY_RBV=2048, the expected delay could be
calculated using the following formula:
XmitTime = (CEIL((0 + 16)/8) + CEIL((2056-0-
2048)/8) + 2048)) * 32.5us
From this, we get the expected delay to be =
67.07ms. However, from the tests we could see
that the average delay (of sample size 15) was
around 70.31ms.
Using the dataset for different data sizes, ranging
from 8 pixel lines to full 2048, we adjusted the
formula to calculate XmitTime as
below: XmitTime =

From this, for MinY_RBV=0 and
SizeY_RBV=2048, we could get the expected
delay to be = 69.34. This, as we can see is closer
to what the real delay is.

The following graph shows the expected delay of
old formula vs expected delay of new formula
compared with the real expected delay that we
got from experiments.

We went from having error rates of +-10ms for
sizes greater than 512 pixels to +-0.7-0.9ms
(average) and error rates of +- 12ms for sizes less
than 512 pixels to +- 0.5-0.7ms (average).

For the second project we created a PyDM
camera viewer application. You can feed a cfg file
and open a pydm camviewer application. The
command to run the pydm camviewer
application is as follows:
pydm camviewer.py <your .cfg file>
where, the .cfg file should have three properties
(Camera Name, Image Address, and Camera
Description) separated by a space.
Now, when the application is running, from
within the application you can control and see
the camera details (ROI stats, view stats, etc),
check the data and display rate, view the camera
images in different color map (monochrome,
magma, etc). You can also see if the camera you
are using is connected or not, and also zoom into
the camera image.

There is also a dropdown menu to choose from
the list of cameras provided from the .cfg file.
You can just click on the dropdown menu and
choose the camera that you want to choose and
view the real time stats of that camera. You can
also choose between viewing the single frame of
the camera image or the average of as many
shots as you like.

mailto:dahal01@slac.stanford.edu
http://@slac.stanford.edu
mailto:bhill@slac.stanford.edu

