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With the approaching launch of LCLS-II, 
there is an urgent need for rapid data 
processing without loss of interpretability. 
Due to the scarcity of beam time and the 
black box nature of machine learning 
(ML), the application of ML to LCLS data 
is considered by some to be unreliable.  
 
This project serves as an example of 
machine learning being carefully and 
effectively applied to the time tool to 
solve a common problem surrounding 
interpretability of data. The motivation is 
to prepare for the upcoming transition to 
the 1 MHz LCLS-II repetition rate, while 
enhancing overall understanding of data. 
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Introduction 

  

Conclusion 

Use of the Linac Coherent Light Source 
(LCLS), SLAC National Accelerator 
Laboratory, is supported by the U.S. 
Department of Energy, Office of Science, 
Office of Basic Energy Sciences under 
Contract No. DE-AC02-76SF00515. 

  

Acknowledgements 

Machine Learning  
for Data Interpretability and  

Visualization Solutions 

  

Intuitively display model’s reasoning in 
order to build user trust and prevent 

prolonged errors 

Results Visualization 

Figure 7. Variable importance visualization tool, 
which allows users to monitor the model with 

the option to accept or reject predictions. 

This work exhibits that machine learning 
models can produce comparable results 
to algorithmic approaches,  while 
improving compute speed and enhancing 
interpretability. This work will be 
continued during Fall 2017 to further 
both the time tool efforts and the 
machine learning initiative at SLAC as a 
whole.  
 
Future work:  
•Adapt variable importance measure to 
take variable interaction into account  
•Further extend visualization capabilities 
to 3D and include parallel coordinate 
representation of machine parameters 
•Apply similar strategies to various other 
problems at SLAC 

experimental 
detector 

  

Research 

Predict the instant x-rays collide with  
the sample on LCLS-II 

Background 

Since the repetition rate of LCLS-II 
prohibits processing data from the 
conventional detector, we want to 
simulate the relative delay prediction 
given a signal from the experimental 
detector using ML, remotely training the 
model prior to an experiment, and then 
deploying on FPGA near the detector to 
enable rapid prediction speeds. 

Figure 1. Diagram of current time tool setup 
with resolution image outputs. 
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Figure 2. Flowchart of initial process. 

Figure 3. Linear regression1 (left), random 
forest2 (right). 1https://i.stack.imgur.com/GXj8T.png 

2http://file.scirp.org/Html/6-9101686/f799e10c-50bd-48ec-9344-
49d767083be5.jpg. 

And the winner is: Random Forest, with a 
mean R2 value of 0.9643 across runs of 
the same material.   

Figure 4. Shot number vs. pixel of detected 
edge vs. predicted delay, demonstrating results 

consistent with physics. 

  

Applications 

Determine the most effective form of 
input data to optimize speed without loss 

of performance and interpretability 

Model Selection 

Feature Engineering 

Figure 6. Feature engineering results 
demonstrated that analog features produced 

optimal, attainable results. 

Figure 5. Comparison of a. raw signal, b. 
reference subtracted signal, c. low-pass filtered 
signal with frequency cutoff of 14MHz, d. low-

pass filtered signal with frequency cutoff of 
195MHz, e. Weiner filtered signal, and f. 

differentiated signal. 

Determining the most informative 
features not only improves the model, 
but also teaches us about the nature of 
the data itself.  


