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The high power X-ray laser produced by LCLS II 
will be focused using a pair of focusing optics (KB 
mirrors), which must be cooled to prevent 
deformation and damage. There are several feasible 
cooling configurations; performance varies with 
choice. The goal of this project is to analytically 
solve for the heat distribution across a mirror for 
each cooling configuration. The analytical solutions 
will allow the most effective cooling system to be 
chosen. 
 
Keywords: LCLS II, KB mirrors, cooling, heat 
distribution 

After solving the 2D steady state versions of bottom 
cooling and full side cooling, I was able to derive an 
analytical solution for 2D steady state top-up-side 
cooling. Then after solving the 3D steady state 
solution to bottom cooling, I successfully derived a 
3D steady state solution for full side cooling.  The 
next steps in this project are to find the 3D 
transient state solutions for bottom and full side 
cooling. Then, to find the 3D transient state 
solution for top-up-side cooling. Finally, it is 
essential to use MATLAB to model all the solutions 
that were obtained, and check them against 
numerical solutions to verify their legitimacy.  
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3D Steady State Solution for Full Side Cooling: 
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2D Steady State Solution for Top-Up-Side Cooling: 
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Top-Up-Side Cooling Solution Details: 

Figure 3*: Plot of the two eigenvalues present in the 
top-up-side cooling solution. 

 It can be seen that as 
 Depending upon the requested precision of the 

answer,               after n > n’ 
 Let n’ be defined as the n such that                   , 

where a is the requested precision 
 Numerically solve for all n<n’, then use the 

approximation          to analytically solve for 
all n≥n’ 

 Given L, h, k, and the requested precision, one 
can use MATLAB to determine the value of n’ 
 

Example: 
 L = 50mm, h = .005mm, and k = .138 W/m*K 
 Precision = .1 
 Calculated: n’ = 3 
 Solution: Numerically solve for G1 through G3 

and D1 through D3, then use the approximation           
           to analytically solve for Gn and Dn, 
n=3,4,5,… 

 

  

Figure 1*: 2D Steady State Top-Up-Side Cooling. 
This configuration shows one quarter of the full 
surface of the mirror being analyzed. The beam 
width is a, and the mirror is cooled across d, and k 
is the mirror’s thermal conductivity. 

  

Figure 2: 3D Steady State Full Side Cooling. This 
image shows one quarter of the full volume of the 
mirror being analyzed. The beam here has a length, 
Lbm, and a width, Wbm. To simplify this problem to 
the 2D version, simply set Lbm equal to the length of 
the mirror. 

The starting point in solving these heat 
distributions analytically is the General Fourier 
Heat Conduction Equation, assuming constant 
thermal conductivity (k): 
 
 
 
 
For steady state problems, this can be simplified to: 
 
 
 


