Analytical Solutions for Temperature Distribution in Blocks and Application for LCLS II Optics

Jiya Janowitz^{1,2}, Lin Zhang²⁺

¹Physics Department, Material Science and Engineering Department, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA ²Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

*zhanglin@slac.stanford.edu

Introduction	Background*	MATLAB Results
The high power X-ray laser produced by LCLS II will be focused using optics that must be cooled to prevent	The starting point in solving these heat distributions analytically is the General Fourier	Steady State 2D Full Bottom Cooling ANSYS Rendering of 2D SS BC 0 60 10 60
deformation and damage. There are several feasible	Heat Conduction Equation, assuming constant	10 50 12.347 15 15 18.573 20 40 31.023

cooling configurations; performance varies with choice. The goal of this project is to analytically solve for the heat distribution across a block for each cooling configuration. The analytical solutions will allow the most effective cooling system to be chosen for LCLS II optics.

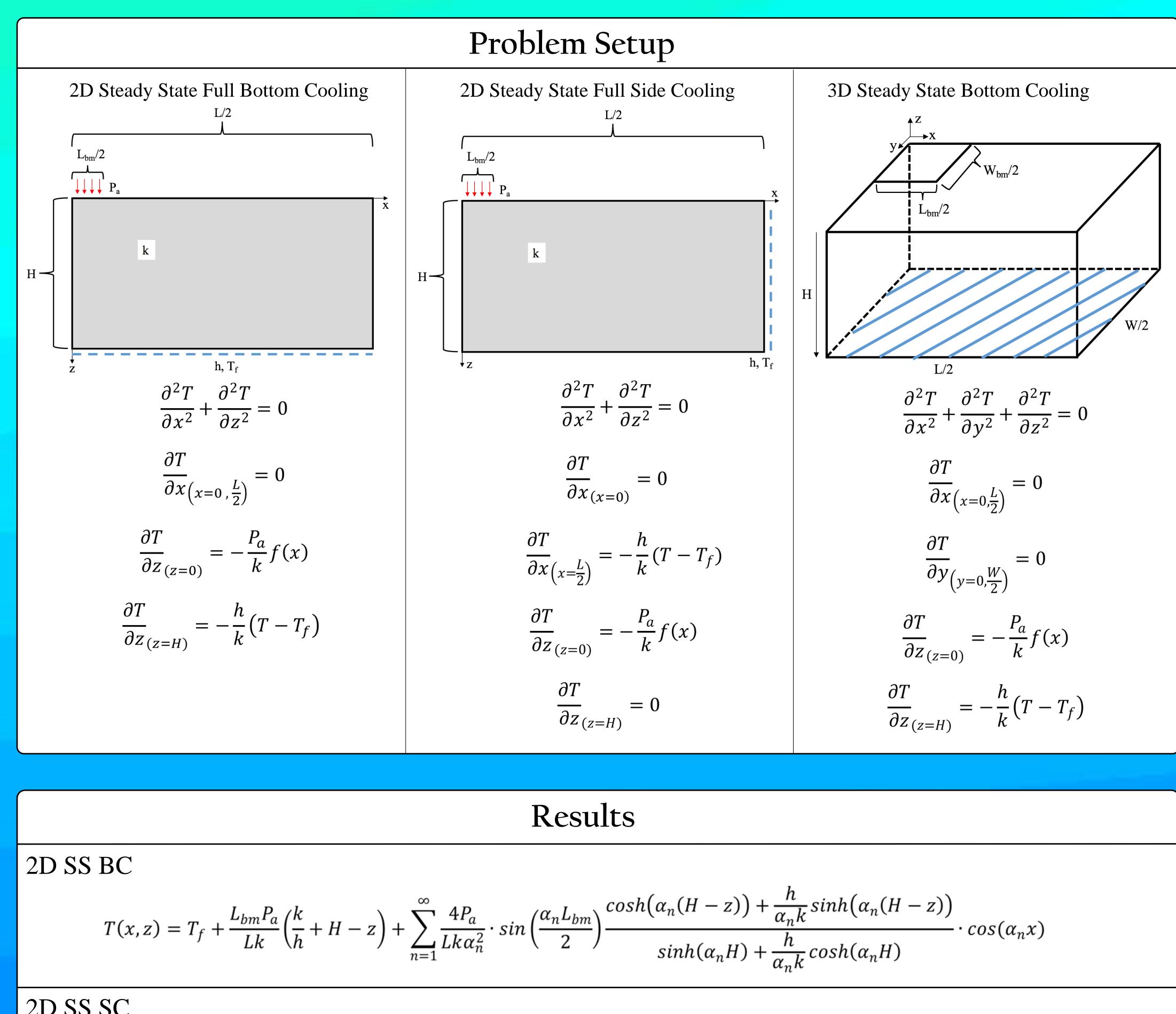
Keywords: LCLS II, heat distribution, cooling, optics

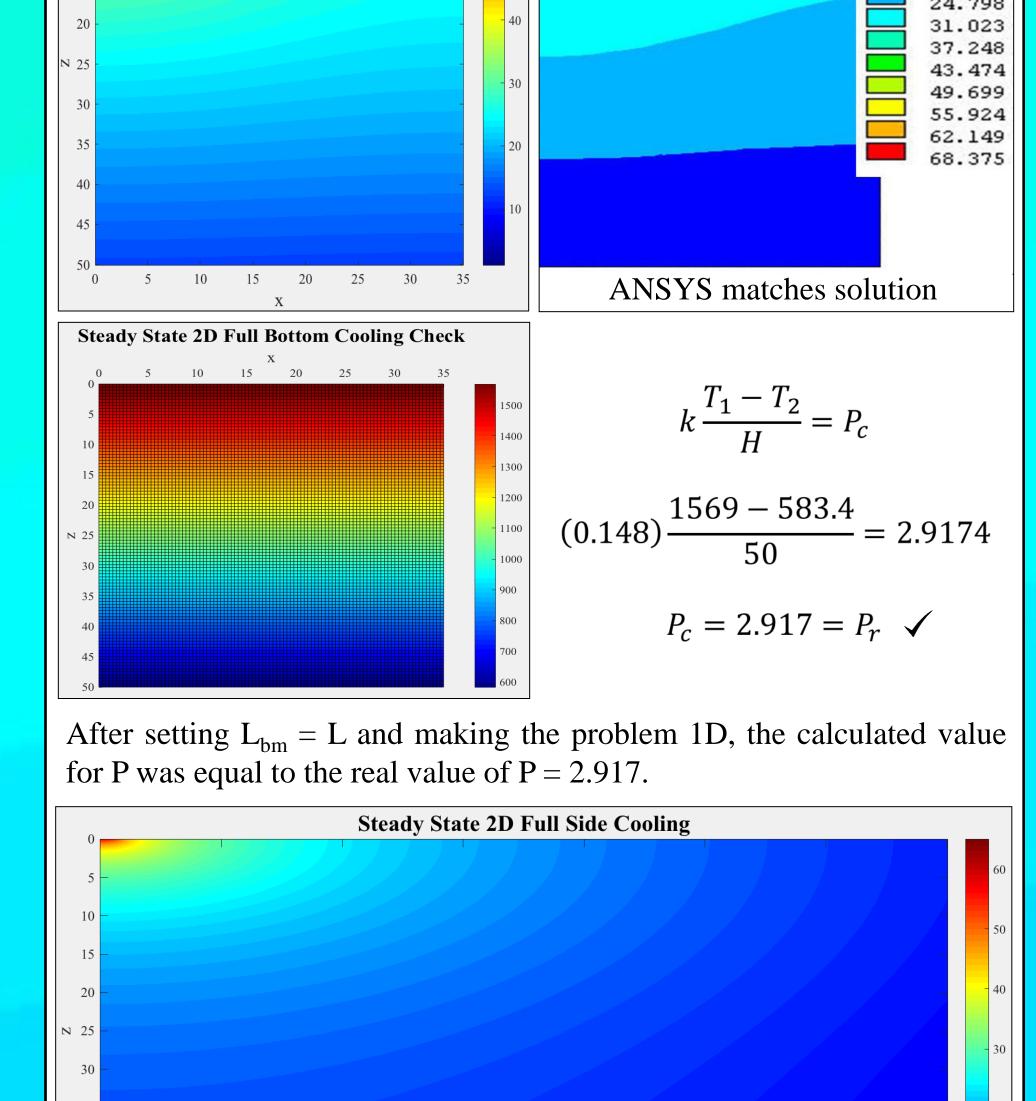
thermal conductivity (k):

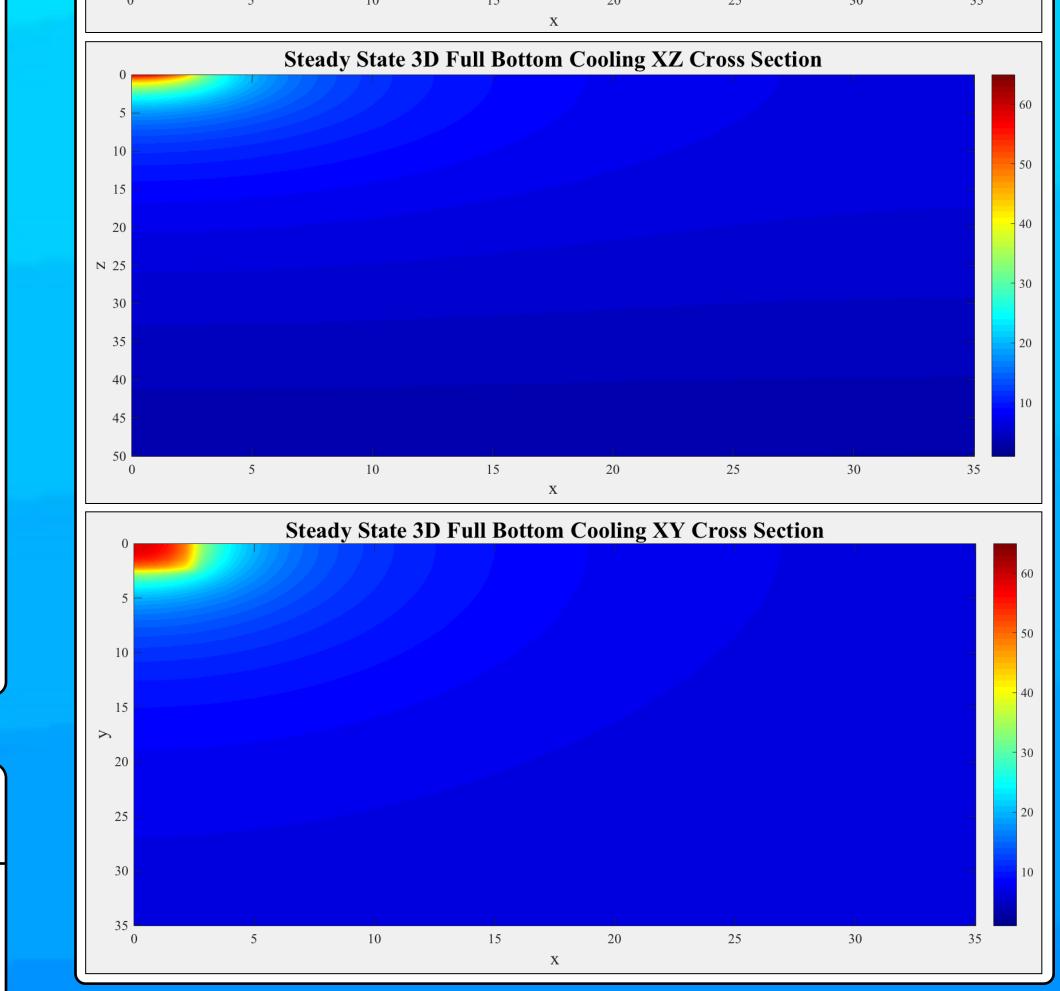
$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial x^2}\right) + q = \rho k \frac{\partial T}{\partial t}$$

For steady state problems, this can be simplified to:

$$-k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) = q$$







Conclusions

Analytical solutions were obtained for 2D and 3D,

$$\begin{aligned} T(x,z) &= T_f + \sum_{n=1}^{\infty} \frac{4P_a}{k\alpha_n} \cdot \frac{\sin\left(\frac{\alpha_n L_{bm}}{2}\right)}{(\sin(\alpha_n L) + L\alpha_n)} \cdot \frac{\cosh(\alpha_n (H-z))}{\sinh(\alpha_n H)} \cdot \cos(\alpha_n x) \end{aligned}$$

$$\begin{aligned} \text{3D SS BC} \\ T(x,y,z) &= T_f + \frac{P_a W_{bm} L_{bm}}{kWL} \cdot \left[\frac{k}{h} + H - z\right] + \sum_{n=1}^{\infty} \frac{4P_a W_{bm}}{kWL\alpha_n^2} \cdot \sin\left(\frac{\alpha_n L_{bm}}{2}\right) \cdot \frac{\cosh(\alpha_n (H-z)) + \frac{h}{\alpha_n k} \sinh(\alpha_n (H-z))}{\sinh(\alpha_n H) + \frac{h}{\alpha_n k} \cosh(\alpha_n H)} \cdot \cos(\alpha_n x) \\ &+ \sum_{m=1}^{\infty} \frac{4P_a L_{bm}}{kWL\beta_m^2} \cdot \sin\left(\frac{\beta_m W_{bm}}{2}\right) \cdot \frac{\cosh(\beta_m (H-z)) + \frac{h}{\beta_m k} \sinh(\beta_m (H-z))}{\sinh(\beta_m H) + \frac{h}{\beta_m k} \cosh(\beta_m H)} \cdot \cos(\beta_m y) \\ &+ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{16P_a}{kWL\alpha_n\beta_m\mu_{nm}} \cdot \sin\left(\frac{\alpha_n L_{bm}}{2}\right) \cdot \sin\left(\frac{\beta_m W_{bm}}{2}\right) \cdot \frac{\cosh(\mu_{nm} (H-z)) + \frac{h}{\mu_{nm} k} \sinh(\mu_{nm} (H-z))}{\sinh(\mu_{nm} H) + \frac{h}{\mu_{nm} k} \cosh(\mu_{nm} H)} \cdot \cos(\alpha_n x) \cdot \cos(\beta_m y) \end{aligned}$$

steady state and transient, bottom and side cooling. To verify the legitimacy of these solutions, MATLAB was used to graph the results. Bottom cooling solutions were confirmed by extending the size of the beam to the surface of the mirror, making the problem 1D. The next steps in this project are to continue coding and confirming analytical solutions for more complex problems.

Acknowledgments

Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

*Lin Zhang, SLAC Engineering Seminar, 2015