AMI-II: Direct Detector Data Analysis

Jessica Flowers

Introduction

Diffraction Pattern

Blobfinding

Optimize ex
diagnostics
than 4 pixels

1. Locate single pixels exceeding
2. Locate single pixels exceeding threshold acceptance threshold
3. Plot coordinates/intensity of clusters to
visualize diffraction pattern
4. Plot histogram of electron counts against sum

Single Pixel Filtering
Analyze un-clustered pixels
Reject pixels below thresh
Continuous distribution with a small bump due
to the electron signal
Lacks additional filter
blobfinding

1. Countsmun
pixels excluded
2. Hixeh intensity adjacent pixels must exist such that sum exceeds another threshold \rightarrow events in $2+$ pixels counted once

Future Projects

Radial/Azimuthal Integration (RoiArch):
Calculate the circular azimuthal average -- the arithmetic mean of data points located around an azimuth
\square Azimuth: Angle between a reference direction (N) and a vector from the origin to a point of interest (star) projected onto the same plane as the reference direction.

Input inner radius riand outer radius ro to define the width of the ring Input inner radius r i and outer radius ro to define the width of the ring
Input starting angle (from x-axis) ao and ending angle (from ao) ai, specifies the arc area between the two concentric circles
Divide area into the number of specified b
Calculate average
Calculate average intensity per bin

Data Analysis

Alignment

- Near-live image of diffraction pattern to maximize intensity
- Parameter optimization

Flowchart: choose from sources \& operations

note how the rings and more defined, and

more defined, and
much higher in intensity
Allows for easier
differentiation between
similar diffraction
similar diffractio
patterns

Reusable Boxes
Highly customizable, which enables advanced levels of analysis. Ability to save boxes for future use adds to use convenience and is an attractive feature.

- Create boxes for more complicated analysis

Define inputs, function, outputs
New center find box: determine center of a centrally
mmetric scattering pattern

Import. py file from directory load module into AM
Import.py file from dire

Conclusion

Acknowledgments

Mentor: Alexander Reid, MeV-UED Instrument Lead Scientist

