
James Chen1, Dehong Zhang2+

PyDM Robotic
Arm GUI

1.LCLS Summer Intern, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

2Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

+Contact: dhzhang@slac.stanford.edu

Introduction The GUI: Command Queue

The goal was to develop a GUI for a Meca500
robot arm, creating an intuitive interface that
is approachable for new users, as well as
provide the necessary capabilities needed for
complex tasks. With the necessity of remote
access and plans of integration into larger
systems, the GUI was created using a SLAC
developed framework called the “Python
Display Manager (PyDM).” In addition to the
task of creating a GUI, the project also, in
part, tests the capabilities of PyDM and
whether it can replace the more commonly
used EDM for EPICS based GUIs.

The Robotic Arm

Date: 09/10/2020

Acknowledgments

Use of the Linac Coherent Light Source
(LCLS), SLAC National Accelerator
Laboratory, is supported by the U.S.
Department of Energy, Office of Science,
Office of Basic Energy Sciences under
Contract No. DE-AC02-76SF00515.

1

2

3

4
5

6

Figure 1 A photo of
the robot from
Mecademic’s official
site, providing a sense
of scale. The added
blue arrows delineate
the positions of the six
joints and number
associated with each
joint (where the robot
can rotate).

The Meca500 is a six-axis industrial robotic
arm that has six degrees of freedom (one for
each joint), weighs 4.5 kg, is rated to carry
0.5 kg (up to 1 kg), and can repeat
movements with a precision of 5 μm.

EPICS

PyDM

The Python Display Manager is a wrapper for
PyQt, a Python-based GUI development
software. PyQt’s Qt Designer enables the user
to drag-and-drop channel accessible widgets
on a screen as well as the ability to make use
of Python’s scientific repertoire. This allows
the user to create more complex interactions
between the different elements of the GUI as
well as enable the ability for real-time data
analysis.

Figure 5 A screenshot of a
prototype PyDM GUI, showing
a button that can connect
directly to a channel. Macros
can also be used in the
“channel” section to use the
same GUI for the same type
of hardware.

EPICS is the control system used at SLAC to
connect hardware to the various computers
on the network. Through this system, it is
possible to remotely access and monitor on-
site hardware. EPICS was used to connect the
robot to the GUI.

Sensors

Actuators

Channel
Access
Server

Channel
Access
Clients (GUI)

Hardware
(Robot)

Computer
Interfaces

Figure 4 A visual guide of how EPICS
connects the user to the hardware. In this
case, most of the sensors and actuators
are part of the robot.

The GUI: The Basics

Conclusion

Although the documentation for PyDM is
currently sparse and there is a learning curve
to PyQt, PyDM has vast benefits of allowing
users to develop simple GUIs quickly (drag–
and-drop) and gives users the option to
develop more complex tools. Even though the
Meca500 robot does not have a focus in data
collection, PyDM allows the development of
data collection tools with real time feedback,
which can be extremely useful.

These tabs provide users with a brief overview
of how the robot works and allows the user to
issue simple commands one at the time like
jogging the joints or providing a set of
coordinates for the robot’s tool.

The right-side panel displays commonly used
features such as the message log, where the
robot’s feedback and error messages will be
sent. The bottom left corner allows the user to
control the gripper. The bottom right allows
the user to set the desired inverse kinematic
configurations.

The “Settings and Documentation” tab
provides links to documentation on how to
use the GUI as well as robot settings like
limiting the robot’s movement range, setting
physical limits (joint velocity, linear
acceleration, etc.), and changing the
reference frames of the robot base and end
effector.

The “Command Queue” tab allows the users
to queue up all possible commands and adds
them to the list widget as Python strings.
From there, the individual commands can be
removed, or entire command sets can be
saved to a Python dictionary as a variable in
the program. For more permanent
commands, the commands can be saved to a
JSON file via the “Save to File” button. These
commands will be loaded into the drop-down
menu at the start-up of the GUI.

Upon clicking the “Run Commands” button,
the program will loop through the commands
in the command queue, split the strings up
and send the individual sections to their
associated connections. The “Run Commands”
button is multithreaded so that the “Pause,”
“Resume,” and “STOP” continue to function,
while the other buttons that can interfere with
the process are disabled. Most of these
processes will send a message to the log to
signal errors or highlight the completion of an
event.

Figure 7 Showcasing the command queue tab and an
example of when the commands are running.

Figure 6 A showcase of the Angular and Cartesian tabs

Figure 3 Diagram showing
how the robot’s end effector
can be in same position
despite having its joints in 8
different orientations or
configurations.

Figure 2 Diagram from
the manual displaying the
robot’s position classified by
the variables (c1, c2, c3)
and the singularities that
exist when the robot is in a
position in between them.

A major part of the robot is the inverse
kinematic configurations that govern how the
robot moves. Because the robot can reach the
same end effector (tool) position with many
different joint positions, the robot cannot
solve for a single solution without the
specification of a configuration. Therefore, the
common problem of singularities arises when
the robot is in between two different
configurations, which causes it to lose 1 or
more of its degrees of freedom. When
controlling the robot using cartesian
commands, the robot’s firmware will find an
infinite number of possible paths when
attempting to pass through a singularity,
causing the robot to move unpredictably
when near or being completely stuck when
passing through a singularity.

