

Ian Laurent van Roque1, Dr. Monarin Uervirojnangkoorn2+, Dr. Paul Christopher O'Grady 2++

Overview

Acknowledgments

Methods

Managing Diffraction Beam
Data with an

Offline Event Builder
1Intern.

2Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

+ Contact: monarin@.stanford.edu ++Contact: cpo@slac.stanford.edu

Date: 08/28/2017

We developed an Offline Event Builder to process
diffraction data in support of major upgrades to LCLS.
The LCLS-II project intends to increase pulse frequency
by 8000 fold, allowing beam diffraction information to
pour in at 20GB of data every second. We evaluate the
effectiveness of numerous analysis scripts in order to
determine the optimal performance of a data-reduction
pipeline intended to filter through “interesting” beam
events.

Keywords: Python, MPI, core threading, LCLS-II

While the ultimate goal of managing 20
gigabytes of data has not yet been reached,
many improvements to the scripts can still
be made to increase the effectiveness of the
algorithms. The script is intended to be
optimized in C to maximize efficiency
between the code and the client cores.
Refactoring of the script may increase speed
as well as more sophisticated use of while
loops to quickly run through event data. The
script will also need to be updated in order
to accommodate different or changing
numbers of files, especially large event
arrays much heftier than 10GB per file.
Tests on better file systems such as the
Burst Buffer at NERSC are being prepared
and are expected to produce better results.
With these improvements, the master-client
method of analysis may become more agile
as it sifts through event data, allowing for
the possibility of a 20GB per second data
reduction pipeline.

Fig 7. Plot for the “superdealer” script at NERSC. As seen here

analysis times of 8.8 gigabytes per second have been

recorded. As surmised the analysis time wavers around a

maximum efficiency as batch size increases. Analysis time

actually increases for very large batches as client cores begin

to be inundated with data.

Use of the Linac Coherent Light Source
(LCLS), SLAC National Accelerator
Laboratory, is supported by the U.S.
Department of Energy, Office of Science,
Office of Basic Energy Sciences under
Contract No. DE-AC02-76SF00515.

In our analysis, variations of three
principle scripts are timed in order to test
their effectiveness in auditing large
quantities of data. Scripts are required to
inspect h5 files across a multi-core
threading system using MPI. Data is
distributed to cores in user-defined
“batches.” It is expected that scripts will
become more efficient as batch number
increases toward a maximum-efficiency
batch after which analysis time plateaus
off.

First Principle Script: The “mpiscript”
 Analyzes single h5 file.

 Timestamps distributed to cores according to batch.
 Cores fetch event data for analysis

Unfortunately for our “superdealer,” time
tests have displayed asymptotic behavior
towards a minimum analysis time of nine
gigabytes a second. At this point,
increasing the batch size of the
distributed data will not increase
efficiency. In fact, increasing batch size
much further is expected to reduce
performance as cores are overwhelmed
by prodigious volumes of data. As seen in
the graphs, the inspection times of 32
cores is similar to the 64 core analysis.
While adding more cores would speed up
survey length, it is not expected to
bolster the process by more than a few
gigabytes a second at most. (Best time
for 256 cores is 17.6 GB per second)

Final principle Script: The “superdealer”

 Utilizes master-client relationship between cores.
 Indices with matching timestamps are gathered.
 Client cores request batches of data from the master.
 Clients pair event data with their timestamps.

Each script is tested over multiple batch
sizes. From the data we can see that the
primitive “mpiscript” can filter though
1GB of data on minute-length timescales,
too slow for our ambitious analysis
requirements. As expected, analysis time
is seen to decrease with both batch size
and number of cores.

Fig 4. Flowchart of the “superdealer” principle script. The master core

matches timestamps for all of the events which are then given to the client

cores. Client cores gather event data over the ten h5 files.

Results

Future

Fig 1. Flowchart depicting LCLS data flow. The top half of the image

illustrates the “online” portion of the process in which data is handled as it is

received. The bottom half portrays an “offline” portion of analysis where

event data has already been saved to memory. Our scripts are to be

implemented in the bottom half

Fig 2. Flowchart of the first principle script. Cores gather corresponding

event data from the timestamp indices. The output for this script is the time it

takes for all the events to be paired with their timestamps.

Second Principle Script: The “superscript”
 Pairs timestamp data over multiple h5 files.
 Event data with matching timestamps are gathered.
 np.searchsorted pairs variable length data.

Fig 3. Illustration of the “superscript.” The event data that has been

matched across timestamps are gathered together as in “mpiscript.” The

output for this script is the time for all identical timestamps to be paired to

their corresponding event data.

Fig 5. Plot for the “mpiscript.” As seen here, analysis times of

about a gigabyte per minute have been recorded. As expected

the algorithm is faster on more cores and approaches a

minimum analysis time as batch increases.

The “superscript” is shown to fare better
in the volley of event data it encounters,
and is capable of pairing data at about a
gigabyte every second. Further tests
show analysis time approaching a
maximum efficiency, agreeing with our
assumptions.

Fig 6. Data for the “superscript.” The “superscript” filters

through data faster than the original principle script. The same

pattern as the previous script is seen confirming our hypothesis

that the analysis time is dependent on batch and the number of

cores.

Analysis

