
Helen Chaffee1+, William Colocho2+

Introduction

Conclusions

Acknowledgments

Research

Further Development
of LCLS-II Simulacrum

1Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA.

2Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

+Contact: hchaffee@g.hmc.edu , colocho@slac.stanford.edu

Date: 08/14/2020

Beamtime at LCLS is limited, making it
difficult to manage instrument
maintenance, software updates, and data
collection schedules.

A mathematical simulation of LCLS would
make beamtime more accessible to all,
allowing scientists to run their own,
personal LCLS-II before bringing their
ideas to the live machine.

This "simulacrum" project is already
semi-functional. The goal of this
internship was to address current
demands for simulacrum by adding a
wide variety of additional features to
existing programs.

Keywords: simulacrum, simulation, linear
accelerator

Since joining LCLS last month, I have
taken on a small, diverse set of projects
to develop a holistic understanding
simulacrum. Now, I can add new variables
to device services and draft new services.
For the future, I am looking forward to
seeing the data that the services can
generate when they work in tandem.

I have decided to extend my internship so
that I can continue to explore the scope of
this project and contribute to its
development.

Fig 1. Below: Live machine data for TMIT. Z
is the horizontal position along the beamline.
The Z tags (e.g., LI22) demarcate the sectors
that house the beamline. The vertical axis is
TMIT in pico-Coulombs (pC). The conversion
from 1e9 electrons to pC is 160.2 pC. This
agrees with the live machine data. Therefore,
simulacrum uses TMIT = 1e9 electrons as the
default for a working BPM.

I'd like to thank William, Lisa, and
everyone else who is excited to see
where this project goes next. Use of the
Linac Coherent Light Source (LCLS),
SLAC National Accelerator Laboratory, is
supported by the U.S. Department of
Energy, Office of Science, Office of Basic
Energy Sciences under Contract No. DE-
AC02-76SF00515.

The simulacrum team had identified more
improvements than could be accomplished
within the scope of a summer internship. I
selected a few that interest me. All these
projects involve "service" programs.
These programs mimic the behavior of
major devices that determine the
properties of the beam (Fig 2.)

Most of these projects are unfinished,
given that I am extending my internship.

Dynamic TMIT
We made the transmitted intensity (TMIT)
of the beam go up to 1e9 electrons when
the beam is on, and 0 when the beam is
off or malfunctioning (Fig 1.)

This project familiarized me with the
functionality of a beam position monitor
(BPM), which tracks the spread of the
beam along a vertical cross-section.
Anywhere a BPM did not detect the beam,
TMIT was made 0. Otherwise, TMIT was
1e9 electrons. This change allows those
writing simulacrum GUIs to detect whether
the beam is on or off at a certain location.
This makes it easier to write GUIs using
simulacrum. This is necessary because
simulacrum needs to be friendly to GUI
authors to reach widespread use at LCLS.

Cryogenic, SRF Services
My second project gave me a chance to
build services from scratch. As part of
LCLS-II, which produced a first lasing last
month, devices are being built to make
LCLS-II superconducting. Currently, LCLS
does not have superconducting
capabilities, so new services must be
written to simulate the new machinery.

These include: cryogenic modules and
superconducting radio frequency (SRF)
cavities. The cryogenics supercool the
magnets, making them superconducting.
The SRF cavities produce the electric
potential to accelerate the beam.

Currently, we have a working draft of a
cryogenic service, with the help of Ahmed
Osman in the simulacrum group.
However, we still need implement
temperature change according to liquid
helium levels. The SRF service is still in
the design stage of production.

Alias Recognition
Simulacrum has to talk to various
applications, but that poses a problem
when applications use different
databases. One inconsistency is the
naming convention for devices. When
applications have different names for a
device, simulacrum needs to know all
those aliases to facilitate the flow of data
that corresponds with each device.

In the same line that establishes data
flow with another application, I made
each service request its own alias. This
bypasses the old method, in which the
service would refer to a hard-coded
translator file. This translator file had to
be updated by hand whenever new
devices were added. Now, we can edit
any service to retrieve its own alias
directly from the external application.

Generate Simulacrum Data
As of this week, I will start generating
simulacrum data for a group that is
creating anomaly detection software for
LCLS. This would speed up the time to
troubleshoot breakdowns in the
accelerator by monitoring live data for
abnormal readings.

Fig 2. Above: structure of simulacrum. Working 
across all the services has been necessary to 
ensure that my changes do not break the 
interconnected web of code. Red annotations 
represent where I have made changes.
1. Adding dynamic TMIT to the BPM service
2. Adding new services
3. Alias Recognition
4. Generating simulacrum data


