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The LCLS currently shoots 120 photon 
packets every second. The LCLS-II will be 
8,000 times faster, shooting up to a 
million pulses per second. Each pulse 
produces a large memory block filled with 
data, called a Datagram. Each Datagram 
must be parsed, analyzed, and then 
stored. All of this must happen in under 
one millionth of a second. I have written 
optimized C code that will accept the 
Datagram, build a unique Python type 
object for it, and then distribute its 
components into that object. This object 
will then be used in further analytical 
processes, which will be carried out in 
Python. 
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LCLS2 Data 
Formatting 

The goal of this project was to properly 
deliver the beam information to the data 
analysis routines. These routines will be 
executed in Python, because their 
implementation is much easier than it 
would be in C. However, Python is 
inefficient with memory management 
and cannot parse a million datagrams 
per second. This part of the process 
needs to be handled by C. 
 

The Datagram:   
Every datagram is segmented, with each 
segment representing the output of one 
sensor in the array. The leading bytes of 
each segment describe the names, data 
types, and positions in memory of all the 
output data from that sensor. Figure 2 
is a visualization of this structure.  
 Fig 2: Datagram 

Each entry in “data” can be either a single value, or 
an array, of any fundamental data type (integer, 
float, double).  The “offset” indicates the size (in 

bytes) of all the “data” entries before the one 
currently being described. No matter where in 

memory the Datagram is saved, we can find the 
location of any “data” member by adding its offset 

to the Datagram’s starting memory address. 

The Python Conversion: 
In order to make the Datagram’s structure 
intuitive and easy to navigate, I created 
two new python objects to store its 
information. 
 Each individual sensor output in the 
Datagram is known as an Xtc. The first 
python object I created acts as an 
information retriever for a single sensor 
segment, so I also called it “Xtc”. This Xtc 
object stores the memory locations and 
names of the output data for its specified 
detector. These names and pointers are 
created using the information contained in 
the Datagram’s Descriptor. This is depicted 
in Figure 3. The Xtc’s data names can be 
accessed by implementing its “keys()” 
function. It also calls a unique constructor 
when the user tries to access an array 
from the Datagram; allocating large 
chunks of memory takes a non-negligible 
amount of time, so once a sizable array is 
stored at a certain location, for 
performance’s sake, it should not move. 
When a user calls an array for retrieval, 
the Xtc python object identifies its 
memory positions, and returns a Numpy 
array whose entries point back to those 
positions. This way, the previously 
allocated data will not be duplicated. 

Fig 3: Conversion Flow Chart 

{(descriptor: “sensor temp”, float, offset=0;   ”position”, 
int[2], offset=4) [data: 53.9514;[2,5]]}, 
{(descriptor: “incident angle”, float, offset=12) [data: 
33.26]}, {(descriptor: …) [data: …]}, 
{(descriptor: …) [data: …]}, 
… 

{(descriptor:DescA;DescB) [data: 
DataA,DataB]}, 
 
{(descriptor:DescC;DescD) [data: 
DataC,DataD]} 
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Fig 1: Beam Visual 

This is a depiction of how the LCLS procures data. The beam 
will hit its target at the Interaction Point, and then the result 

will be captured by the sensor array placed behind it. The 
depicted CSPAD is one of many detectors whose outputs 

must be accounted for during data parsing. 
*Image courtesy of LCLS-II homepage webmaster 

The second python object is meant as an 
ease of access tool and allows the user to 
quickly maneuver all of the information in 
the Datagram. Since it holds every piece 
of information we want to be able to use, I 
called the object “Dgram”.  It contains a 
dictionary that can be accessed using the 
tab complete routine in IPython.  
Each value in the dictionary is an Xtc 
python object, with the corresponding key 
being the name of the sensor assigned to 
that Xtc. When a user presses “Tab” on a 
Dgram object instance in IPython, a list of 
every sensor contained in that Dgram is 
printed to the screen. The user can then 
cycle through all of sensors by repeatedly 
pressing “Tab”. This utility combined with 
the “keys()” method contained in the Xtc 
python object creates an efficient data 
management routine. The user can create 
a Dgram instance, tab complete to the 
desired sensor, print a list of its 
components, and then use the Xtc object’s 
predefined, custom retrieval functions to 
access their desired data member.  

Complications and 
Troubleshooting 

One of the first challenges we faced was 
figuring out how long to store the data 
from the laser in memory. Each new pulse 
produced a new Datagram from the 
sensors, but analysis requires comparing 
data across multiple shots. We couldn’t 
simply store every single Datagram, 
because of memory access restrictions. 
Solving this issue required the use of a 
Python tool known as “reference 
counting”. When a Datagram is first 
created, it has a reference count of 1. In 
order to access the correct information 
from an array in that Dgram, the memory 
that contains that array must not be 
altered. When a user accesses an array, 
the reference count of the Dgram is 
increased, and is subsequently decreased 
when that array is no longer in use. The 
Datagram’s memory is then deallocated 
when its reference count reaches 0. 
The biggest issue this program currently 
faces is data inflation. The output of a 
single pixel from the sensor array is 16 
bits long. The first 2 bits describe the gain 
the pixel was set at during bombardment, 
and the last 14 hold its received 
information. In order to access the data 
as quickly as possible, the gain needs to 
be stored separately. However, the 
smallest, store-able unit is 8 bits, 
meaning the original 16 bits must become 
24. This is a 50% data increase the LCLS-
II cannot afford.  

My work has helped lay foundations for 
future data handling at the LCLS-II. The 
Python extensions I have written will 
need to be updated and changed as the 
LCLS-II develops, but the fundamental 
data structure and reference counted 
memory management are solid. The data 
inflation issue is a good example of the 
unforeseen complications that will keep 
popping up as development continues. 
These complications can necessitate 
moderate or even dramatic change in the 
software, and future efforts in LCLS-II 
data formatting must be able to keep up 
with the changing needs of this project.  


