

Hayden Blair1, Clemens Weninger2, Paul Christopher O’Grady2,+

Introduction

Conclusions

Acknowledgments

Research

1LCLS Intern

2Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

+Contact: cpo@slac.stanford.edu

Date: 08/07/2017

The LCLS currently shoots 120 photon
packets every second. The LCLS-II will be
8,000 times faster, shooting up to a
million pulses per second. Each pulse
produces a large memory block filled with
data, called a Datagram. Each Datagram
must be parsed, analyzed, and then
stored. All of this must happen in under
one millionth of a second. I have written
optimized C code that will accept the
Datagram, build a unique Python type
object for it, and then distribute its
components into that object. This object
will then be used in further analytical
processes, which will be carried out in
Python.
Keywords: Pulse, Datagram, Analysis

The successes of this project are due in
large part to the efforts of the faculty
that guided me. I am very grateful to
Chris O’Grady and Clemens Weninger for
all of the clear, deeply beneficial advice
they provided, and thank them both for
the opportunity to be a part of this effort.

LCLS2 Data
Formatting

The goal of this project was to properly
deliver the beam information to the data
analysis routines. These routines will be
executed in Python, because their
implementation is much easier than it
would be in C. However, Python is
inefficient with memory management
and cannot parse a million datagrams
per second. This part of the process
needs to be handled by C.

The Datagram:
Every datagram is segmented, with each
segment representing the output of one
sensor in the array. The leading bytes of
each segment describe the names, data
types, and positions in memory of all the
output data from that sensor. Figure 2
is a visualization of this structure.
 Fig 2: Datagram

Each entry in “data” can be either a single value, or
an array, of any fundamental data type (integer,
float, double). The “offset” indicates the size (in

bytes) of all the “data” entries before the one
currently being described. No matter where in

memory the Datagram is saved, we can find the
location of any “data” member by adding its offset

to the Datagram’s starting memory address.

The Python Conversion:
In order to make the Datagram’s structure
intuitive and easy to navigate, I created
two new python objects to store its
information.
 Each individual sensor output in the
Datagram is known as an Xtc. The first
python object I created acts as an
information retriever for a single sensor
segment, so I also called it “Xtc”. This Xtc
object stores the memory locations and
names of the output data for its specified
detector. These names and pointers are
created using the information contained in
the Datagram’s Descriptor. This is depicted
in Figure 3. The Xtc’s data names can be
accessed by implementing its “keys()”
function. It also calls a unique constructor
when the user tries to access an array
from the Datagram; allocating large
chunks of memory takes a non-negligible
amount of time, so once a sizable array is
stored at a certain location, for
performance’s sake, it should not move.
When a user calls an array for retrieval,
the Xtc python object identifies its
memory positions, and returns a Numpy
array whose entries point back to those
positions. This way, the previously
allocated data will not be duplicated.

Fig 3: Conversion Flow Chart

{(descriptor: “sensor temp”, float, offset=0; ”position”,
int[2], offset=4) [data: 53.9514;[2,5]]},
{(descriptor: “incident angle”, float, offset=12) [data:
33.26]}, {(descriptor: …) [data: …]},
{(descriptor: …) [data: …]},
…

{(descriptor:DescA;DescB) [data:
DataA,DataB]},

{(descriptor:DescC;DescD) [data:
DataC,DataD]}

to

Dgram:
Xtc1:
 DataA
 DataB
Xtc2:
 DataC
 DataD

Datagram

Python

1

2

1:Use Dgram segment to

create Xtc object

2:Use DescA to find

name and memory
location of DataA

3: DataA in Xtc points to

original DataA memory
address in Dgram

3

Fig 1: Beam Visual

This is a depiction of how the LCLS procures data. The beam
will hit its target at the Interaction Point, and then the result

will be captured by the sensor array placed behind it. The
depicted CSPAD is one of many detectors whose outputs

must be accounted for during data parsing.
*Image courtesy of LCLS-II homepage webmaster

The second python object is meant as an
ease of access tool and allows the user to
quickly maneuver all of the information in
the Datagram. Since it holds every piece
of information we want to be able to use, I
called the object “Dgram”. It contains a
dictionary that can be accessed using the
tab complete routine in IPython.
Each value in the dictionary is an Xtc
python object, with the corresponding key
being the name of the sensor assigned to
that Xtc. When a user presses “Tab” on a
Dgram object instance in IPython, a list of
every sensor contained in that Dgram is
printed to the screen. The user can then
cycle through all of sensors by repeatedly
pressing “Tab”. This utility combined with
the “keys()” method contained in the Xtc
python object creates an efficient data
management routine. The user can create
a Dgram instance, tab complete to the
desired sensor, print a list of its
components, and then use the Xtc object’s
predefined, custom retrieval functions to
access their desired data member.

Complications and
Troubleshooting

One of the first challenges we faced was
figuring out how long to store the data
from the laser in memory. Each new pulse
produced a new Datagram from the
sensors, but analysis requires comparing
data across multiple shots. We couldn’t
simply store every single Datagram,
because of memory access restrictions.
Solving this issue required the use of a
Python tool known as “reference
counting”. When a Datagram is first
created, it has a reference count of 1. In
order to access the correct information
from an array in that Dgram, the memory
that contains that array must not be
altered. When a user accesses an array,
the reference count of the Dgram is
increased, and is subsequently decreased
when that array is no longer in use. The
Datagram’s memory is then deallocated
when its reference count reaches 0.
The biggest issue this program currently
faces is data inflation. The output of a
single pixel from the sensor array is 16
bits long. The first 2 bits describe the gain
the pixel was set at during bombardment,
and the last 14 hold its received
information. In order to access the data
as quickly as possible, the gain needs to
be stored separately. However, the
smallest, store-able unit is 8 bits,
meaning the original 16 bits must become
24. This is a 50% data increase the LCLS-
II cannot afford.

My work has helped lay foundations for
future data handling at the LCLS-II. The
Python extensions I have written will
need to be updated and changed as the
LCLS-II develops, but the fundamental
data structure and reference counted
memory management are solid. The data
inflation issue is a good example of the
unforeseen complications that will keep
popping up as development continues.
These complications can necessitate
moderate or even dramatic change in the
software, and future efforts in LCLS-II
data formatting must be able to keep up
with the changing needs of this project.

