Introduction

In the study of the structure of matter at LCLS, Xrays have been very useful in revealing the structure of a wide range of materials. An X-ray interacts with an atom either by being scattered or being absorbed. In analyzing the scatter data from an ultra-fast X-ray interaction with diatomic molecules, we can read information that can hep us determine the structure. Using Legendre decomposition, we broke the data down to the isotropic and anisotropic diffraction patterns and densities.

The goal of the project is to analyze higher order anisotropic patterns/densities and analyze the molecular rotation information .
The Keywords: X-ray Scattering, X-ray isotropic diffraction, X-ray anisotropic diffraction

Model of X-ray Scattering

Modeling the X-ray scattering of a diatomic Molecule i.e. Oxygen.
X-rays are scattered by electrons of atoms. As the wavelength of the X -rays of the order of the atom diameter, most of the scattering is in the forward direction.
The X-ray scattering power will depend on the number of electrons in an atom (the heavier the atom, the more it will scatter) and will decrease with increasing scattering angle.

Assuming only elastic scattering: $|\boldsymbol{k} \mathbf{1}|=|\boldsymbol{k} \mathbf{2}|$
The scattering vector $\vec{q}=\overrightarrow{k_{1}}-\overrightarrow{k_{2}}$
$|\boldsymbol{q}|=2|\mathrm{k}| \sin (\theta)$ (units: 1/Angstrom) (Reference: Fig 1)

Fig 1:

The atomic form factor (total scattering of an atom) $=$ $F(\vec{q})=\int \rho(\vec{r}) e^{i \vec{q} \cdot \vec{r}} d \vec{r}$

Calculating atomic form factor using Cromann's 9 coefficients:
$f(\vec{q})=\sum_{i=1}^{4} a_{i} \exp \left(-b_{i}\left(\frac{q}{4 \pi}\right)^{2}\right)+c$
Calculating Form factor for a molecule(2 or more atoms):
$F_{\text {mol }}(\vec{q})=\sum_{j} f_{j}(\vec{q}) e^{i \vec{q} \cdot \overrightarrow{r_{j}}}$
We cannot measure $F_{\text {mol }}$ so we measure Intensity $=$
$\left|F_{\text {mol }}\right|^{2}$

The Figures below (fig 2 and fig 3) show the plot of the modeled form factor of an oxygen atom and intensity of an oxygen molecule.

Fourier Analysis

We sine-transformed the isotropic part of the Legendre decomposition($\beta 0$) to arrive at the convert the data from scattering vector space(qspace) to real space (the position space). The sine transform of $\beta 0(q, t)$ results to a pair correction function $\mathrm{PC}(\mathrm{r}, \mathrm{t})$

The figure above shows some vibrations and some elements of the dictionary that we can use to map to the distances.

Deconvolution

The Deconvolution of the result is necessary because of the interference from the window function applied to the data during the sine transform. Applying deconvolution will make the dictionary sharper and will remove the vibrations and interferences that are currently present.

Conclusions

This poster showcases the analysis of data measured from an ultra-fast x-ray scattering experiment using cartesian to tripolar coordinates conversion, Legendre
Decomposition, Fourier sine transform. This process resulted in the position space equivalent of the scattering vector space data that was initially measured.
The best next step to take is to perform the deconvolution of the sine transform to get a sharper image with little or no interferences.
The next plan is to analyze the higher order anisotropies that contain more information on molecular motion using the spherical Bessel function.

Acknowledgments

Special Thanks to Adi Natan for his teachings and guidance. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

