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In single particle imaging (SPI), an x-ray free-electron laser (XFEL) pulse 
hits the target particle in the experiment chamber and diffracts off of it 
before the particle is destroyed by Coulomb explosion. Diffraction patterns 
from single-particles are used to reconstruct the three-dimensional (3D) 
structure of the particle. However, the nanoparticles can often aggregate 
together resulting in an unusable "multi-hit" image (Fig. 1). These multi-hit 
images must be discarded to correctly determine the structure. 

Researchers have resorted to manual particle picking, unsupervised 
machine learning techniques such as spectral clustering [2] and more 
recently supervised machine learning using convolutional neural networks 
(CNNs) [3,4]. Limitation of these CNN papers are two-fold: 1) it has not 
been shown whether CNNs can handle sparse photon regime, 2) needs 
retraining for every new experiment.

The focus of this project were to 1) study CNN performance in sparse 
photon regime and 2) develop a twin neural network architecture to 
classify single particle images for LCLS deployment.

Figure 2: A set of eleven protein 
structures from Protein Databank 
(PDB) used in classification. 1) 1fpv: 
feline panleukopenia virus (65kDa), 
2) 1ijg: bacteriophage head-tail 
connector (431kDa), 3) 1ss8: GroEL 
(386kDa), 4) 3iyf: Lidless mm-cpn in 
open state (890kDa), 5)  3j03: 
Lidless mm-cpn in closed state 
(843kDa), 6) 6ody: Helicobacter 
pylori VacA (422kDa), 7) 6sp2: 
SERINC from Drosophila 
melanogaster (354kDa), 8) 6xs6: 
SARS-CoV-2 spike (418kDa), 9) 
7dwz: S protein of SARS-CoV-V2 
(443kDa), 10) 7dx8: S protein of 
SARS-CoV-V2 bound with PD of 
ACE2 conformation 2 (635kDa), 11) 
7dx9: S protein of SARS-CoV-V2 
bound with PD of ACE2 
conformation 3 (635kDa)

With Data Augmentation (with gaussian noise set to 0.3)

Model Test Accuracy Test Count 
Accuracy

Test Particle 
Accuracy

3-layer Multi-output CNN (Late) 48.9 75.4 61.6
5-layer Multi-output CNN (Late) 51.5 77.9 64.1
10-layer Multi-output CNN (Late) 50.5 79.9 60.4
18-layer Multi-output CNN (Late) 5.3 56.6 9.3
Multi-output CNN (Early) 7.0 77.6 8.9
ResNet 18 58.0 78.4 70.4
VGG16 60.7 82.5 70.6

Benchmark

Model Test Accuracy Test Count 
Accuracy

Test Particle 
Accuracy

3-layer Multi-output CNN (Late) 85.4 93.4 90.3
5-layer Multi-output CNN (Late) 85.1 93.4 90.4
10-layer Multi-output CNN (Late) 90.4 97.3 91.6
18-layer Multi-output CNN (Late) 84.3 95.4 86.3
Multi-output CNN (Early) 87.8 94.9 91.4
ResNet 18 27.6 65.3 39.3
VGG16 89.3 98.3 89.9

We would like to thank Ariana Peck for allowing us to use her cmtip 
software package to generate the diffraction images used to test the twin 
neural network, Frédéric Poitevin and Monarin Uervirojnangkoorn for their 
help in understanding the math behind diffraction resolution, and Shawn 
Cai and Enci Liu for allowing us to use their datasets and thumbnail image 
generation notebook to make the thumbnail images necessary for model 
training/testing.

Key takeaways from this project are as follows. First, the 10-layer 
multi-output CNN from [7] is somewhat effective at classifying images as 
single particle or multi-hit when noise was introduced to the diffraction 
images, but it is not as accurate as when no noise was added to the 
images. This could become an issue if it is used to classify single particle 
images from noisy experimental data. Second, the twin neural network can 
be seen as a viable option for classifying single particle images from 
multi-hit images, given the right feature vector dimension and alpha value 
used in model training.

In regards to future work, we hope to train and test the 10-layer 
multi-output CNN and twin neural network on experimental data taken 
from a variety of detectors and beam parameters. We hope to train and 
test both models on more PDBs used in the project so far, especially since 
proteins have a variety of shapes and sizes. We also hope to explore 
different types of CNNs and embedding models for the twin neural network 
to further expand the classification capabilities.

Figure 4: The architecture of the late-branching 10-layer CNN model [7].

This project is built off the work of two Stanford 
students, Shawn Cai and Enci Liu, who created a 
multi-output CNN with the purpose of classifying SPIs, 
as well as identify which particle a given diffraction 
image represented. In their project, Cai and Liu 
reported that a 10-layer multi-output CNN was the most 
efficient at identifying SPIs and particles the images 
represent. However, their tests did not introduce a lot of 
noise into their experiment, and CNNs could become 
difficult to maintain due to the need to retrain when 
analysing diffraction images of a particle it has not seen 
before.

Table 1: Benchmark CNN performance on test dataset with no noise applied.

Table 2: CNN performance on test dataset with gaussian noise.

Figure 6: The general architecture of a twin neural network.
https://omoindrot.github.io/triplet-loss

Figure 7: Example of embedding calculations being adjusted using triplet 
loss in model training.

Figure 9: Twin network accuracy scores with gaussian noise set to 0.15

The CNNs [5] use a multi-output architecture which can predict both 
protein type and number of particles in the diffraction pattern (Fig. 4). 
A benchmark was taken to see if model accuracies were high for 
noise-free images (Table 1). Then, the CNNs were tested at lower 
fluences with fluence jitter. Poisson and Gaussian noise were applied to 
the images (Table 2). Data augmentation was used to significantly 
increase the diversity of the training dataset and also simulate changes in 
the detector distance/wavelength (Fig. 5). Results are better than an 
expert human.

The twin neural network was developed for one-shot learning and is 
used by Google for facial recognition (Fig. 4) [6]. Twin network tries to 
minimize the triplet loss function (Fig. 5 & 6). Training dataset contained 
5,000 diffraction images, for each of the four particle counts (single, double, 
triple, and quadruple) of each PDB. The network was tested by changing the 
number of embeddings (by starting at 2 and increasing by powers of 2) and 
by changing the alpha values (starting at 0.0 and increasing by 0.1). The 
result was that the twin neural network was able to classify single-hit 
images very effectively when the embedding dimension was 32, no matter 
the alpha value used. For lower embedding dimensions, however, an 
optimizing alpha value helped achieve better accuracy (Fig. 7).
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Figure 10: Classification of single-particle images and multi-hit images 
from twin network, labeled Prediction / Ground Truth.

Figure 8: Triplet loss function used to train model.

With Data Augmentation (with gaussian noise set to 0.0)

Model Test Accuracy Test Count 
Accuracy

Test Particle 
Accuracy

3-layer Multi-output CNN (Late) 59.3 78.0 73.7
5-layer Multi-output CNN (Late) 62.1 79.2 76.1
10-layer Multi-output CNN (Late) 56.7 79.2 69.0
18-layer Multi-output CNN (Late) 5.3 56.6 9.3
Multi-output CNN (Early) 9.2 56.6 8.9
ResNet 18 53.6 71.7 72.3
VGG16 65.6 84.3 74.8

Table 2: CNN performance on test dataset with no gaussian noise.

Figure 5: Data augmentations technique to introduce diversity in training data.

Figure 1: Diffraction from single, double, triple, and quadruple PR772 virus hits 
at LCLS.

Figure 3: Noise-free diffraction at high fluence and noisy diffraction at low 
fluence of spike protein SARS-CoV-V2 (7dx8)

Simulated diffraction patterns from 11 PDBs (Fig. 2) are shown in Fig. 3. 
220,000 patterns were generated using skopi [1]. 

https://scholar.google.co.kr/scholar?oi=bibs&cluster=128963952133181058&btnI=1&hl=en
https://omoindrot.github.io/triplet-loss

