

Dillon Hu, Jing Yin2, Karl Gumerlock2+

Introduction

Conclusions

Acknowledgments

Research

Integration of Blu-Ice into
EPICS

2Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

+Contact: klg@slac.stanford.edu

Date: 08/01/2016

The SSRL beamline is controlled by
the DCS protocol or distributed
control system, which consists of
three parts: The Blu-Ice GUI, the
DCSS or the distributed control
system server, and the DHS or
distributed hardware servers.

Some of the drawbacks of Blu-Ice is
that the GUI scripted from Tcl/Tk,
which is a very old and rarely used
language. DCSS/DHS are
programmed in C++, but it is very
complex and hard to understand,
thus making maintenance quite
difficult. The purpose of this project
is to integrate as much of Blu-Ice
into EPICS as we can, with the
eventual goal of replacing all of
DCSS/DHS with EPICS and replacing
the Blu-Ice GUI with one written in
Python.

We wanted to integrate EPICS into
Blu-Ice to make the source code
more readable and maintainable.

This is still a work in prohress. There
already exists a viable solution for
integrating Blu-Ice with EPICS
(JBluIce). We are currently working
on launching and testing it.

Eventually, we hope to create a new
GUI written in Python.

Use of the Linac Coherent Light Source
(LCLS), SLAC National Accelerator
Laboratory, is supported by the U.S.
Department of Energy, Office of Science,
Office of Basic Energy Sciences under
Contract No. DE-AC02-76SF00515.

Initially, I spent time learning how
EPICS worked. EPICS uses IOC’s
(Input Output Controllers) which
interface to equipment and devices.
The IOC runs on a database of PVs
(or records), process variables that
represent instruments and their
controllable aspects. Clients can
connect to the IOC via Channel
Access protocol and then interact
with the hardware.

Once we were able to get access to
the Blu-Ice source code, I started
parsing through it to find the best
way to integrate EPICS into Blu-Ice,
as well as trying to understand how
Blu-Ice worked.

The DCS server, or DCSS
communicates with the Blu-Ice GUI
and DHS. The GUI sends instructions
to DCSS, which tells the DHS what
to do. The DHS has low-level control
over physical devices and simply
executes instructions from the
DCSS.

We hoped to initially replace the stoh
and htos messages (Server to
Hardware and Hardware to Server
messages) that the DCSS
sends/receives from the DHS to
control hardware by redirecting it to
modify/change EPICS PVs via
Channel Access. This would be
simplest and easiest way to connect
DCSS to EPICS.

We found a gateway that sent DCS
messages into EPICS, and were
hoping to integrate that into Blu-Ice.
The gateway was already written
and allowed for stoh and htos
messages to be sent to EPICS. The
trick would be properly integrating it
into Blu-Ice. The DCSS is a very
complex system as it manages
several GUI clients as well as several
hardware clients. The DCSS also
allows custom scripts to be run and
executed, which also adds another
dimension of complexity. The most
logical way to integrate EPICS would
be to create a single gateway that
parses and executes all messages
being sent to the server (gtos or GUI
to server). However, upon
observation of the DCSS structure,
this became unfeasible as each GUI
client has its own message handler,
meaning that a separate gateway
would have to be created for each
client.

Fig 1. DCS architecture. Blu-Ice GUIs
connect to the DCSS, which sends
instructions to the DHS.

New Discovery

As I was researching information on
Blu-Ice, I stumbled upon a project
that a team from Argonne National
Laboratory did (JBluIce), which
essentially removed DCSS/DCS from
Blu-ICE and replaced it with EPICS.
They also replaced the Tcl/Tk GUI
with one written in Java. This was a
major discovery as it basically
encompassed our project goals
(Integrating EPICS into Blu-Ice and
replacing the GUI with one written in
a more modern programming
language).

Currently, we are working on
launching the JBluIce and testing it.
There are a lot of missing packages
that need to be installed and the
configuration of JBluIce will have to
be changed to suit the SSRL
beamlines. We are hoping that we
can deploy JBluIce this summer.

I’m also in the process learning
Python as we hope to replace the
Java GUI with one written in Python.

