
Austin Gnecco1, Tyler Johnson2+

Introduction

Conclusions

Acknowledgments

Design

FPGA Based
BiSS C Splitter

1LCLS Intern 2020 

2Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

+Contact: tjohnson@slac.stanford.edu

Date: 9/10/2020

The problem that I was tasked with
was to find a way to record the
information from a closed loop encoder
system, so that it could be monitored by
the greater LCLS beamline control
system. Currently, there are extremely
precise encoders on the LCLS mirror
tables, however, they only communicate
with their attached motor, and do not
offer a native option to record position
data.

The proposed solution was to design
a FPGA based signal splitter to be used
with the encoders on the mirror tables at
LCLS. The job of this signal splitter is to
take the position information from the
encoder and (upon request) deliver that
information to either the control motor or
a data acquisition device to log its
position or report it to the greater control
system.

I approached this design by first
creating a simulation in MATLAB, and
then using that simulation to generate
the VHDL code that will be used to run
the splitter. The VHDL code will then be
applied to a Artix-7 development board,
to split the signals.

Although the final implementation of
this code is ongoing, the MATLAB
simulations have shown that this splitter
design is capable of quickly and
accurately storing data to be shared
between two different devices.

This design will be further validated
through simulation of the generated
VHDL code using Vivado before it will be
tested on the actual encoder, motor and
DAQ hardware at LCLS.

The ability for LCLS operators to log
and verify the positions of mirrors on the
beamline should allow for a more
complete view of beamline devices.

Use of the Linac Coherent Light Source
(LCLS), SLAC National Accelerator
Laboratory, is supported by the U.S.
Department of Energy, Office of Science,
Office of Basic Energy Sciences under
Contract No. DE-AC02-76SF00515.
Additionally, this project would not have
been possible without the support of my
mentor Tyler Johnson.

Many potential designs were created,
but eventually the one that was settled
on used two banks of memory that would
be switched between to provide the most
accurate position information. The design
works as such:

The encoder and motor use a
protocol called BiSS-C in order to
communicate (Fig. 1). In this protocol, a
signal is sent on the MA line from the
commanding device to act as a clock. It
is a square wave that can range
anywhere between 1mhz and 10mhz
depending on the device. As not every
device is required to use the same
frequency, the splitter had to be capable
of dealing with multiple clock speeds at
the same time.

All interactions with the encoder are
controlled through the BiSS-C Master
Module(Fig. 3). This module continuously
sends a 10 MHz square wave to the
encoder, in order to request new location
data as often as possible. As the
information is received back from the
encoder, this module also counts the
number of bits received and looks for
errors before passing the information on
to the buffer module.

Upon the encoder signals entering
the Buffer Module (Fig. 4), the Task
Scheduler (Fig. 5) looks at all of the
different signals coming into the FPGA
and decides which requests will be
executed first. The DAQ and Motor BiSS

MATLAB Design

Fig.1 – BiSS C Waveform

Fig. 2 – System Overview

Fig. 3 – BiSS C Master Module

Fig. 4 – Buffer Module

Fig. 5 – Task Scheduler

C Slave modules (on the right of Fig. 2)
process requests from the DAQ and
motor by signaling the Task Scheduler
when either requests new encoder
location data.

To reduce latency, read requests
from the motor have the highest priority
and will be executed first. If there is also
a request to write new information from
the encoder at the same time as a
request to read information, the two
events can happen simultaneously
through the dual bank design: When new
information from the encoder is received,
it is written to bank 1. While new data is
being written, the old data can be read
off bank 2, to either the motor or the
DAQ. Assuming that no errors are
detected, the banks switch, making bank
2 the most recent data that is sent out of
the device, while bank 1 is written over
with new information from the encoder. If
an error is detected, the banks do not
switch, and the corrupt data is written
over by new data before it is read.

Although this structure is not without
its flaws (most noticeably, two reads
cannot happen at once and when a write
has started, a read must wait until the
write finishes to begin) structure helps to
minimize latency, while being as accurate
as possible and still allowing for the
encoder, motor, and DAQ to all read and
write data at their native clock speeds.

Design Continued


