Plasma Wakefield Acceleration of Positron Bunches

Jorge Vieira

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

http://epp.ist.utl.pt[/jorgevieira]

0

- Work in collaboration with:
 - L.D. Amorim, R.A. Fonseca, L.O. Silva (IST); W. Mori (UCLA)
- Simulation results obtained at SuperMUC through PRACE awards

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Osiris/dev 3.0

v2.0

UCLA

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis Infrastructure
- Developed by the osiris consortium
 - \Rightarrow UCLA + IST

Ricardo Fonseca: ricardo.fonseca@ist.utl.pt Frank Tsung: tsung@physics.ucla.edu

http://cfp.ist.utl.pt/golp/epp/ http://exodus.physics.ucla.edu/

code features

- Scalability to ~300 K cores
- SIMD hardware optimized
- Tunnel (ADK) and Impact Ionization
- Optimized higher order splines
- Parallel I/O (HDF5)
- Boosted frame in 1/2/3D
- Ponderomotive guiding center
 - QED, meta-materials

Two paths for positron acceleration in plasmas: enhance electron density or create a hollow plasma channel

On-axis electron filament

- On-axis, high density plasma e-filaments focus positrons.
- Can we create positron focusing structures in a controllable way?

from J. Vieira et al PRL (2014)

Hollow plasma channel

- Remove plasma electrons and plasma ions to form a hollow channel.
- What are the conditions for a driver to create its own hollow channel?

Two paths for positron acceleration in plasmas: enhance electron density or create a hollow plasma channel

On-axis electron filament	Hollow plasma channel		
 On-axis, high density plasma e-filaments focus positrons. 	 Remove plasma electrons and plasma ions to form a hollow channel. 		
 Can we create positron focusing structures in a controllable way? 	 What are the conditions for a driver to create its own hollow channel? 		
Plasma density (8.0 x 10 ¹⁶ cm ⁻³)			
from J. Vieira et al PRL (2014) from S. Corde et al Nature (2015)	L.D. Amorim et al (2015)		

Doughnut plasma wave in the blowout regime

IJĵ

propagation direction

J. Vieira et al Proceedings of AAC (2014); N. Jain et al arXiv (2015)

Wakefield structure shows positron focusing and accelerating regions.

- Linear focusing force for e⁺
- Width of linear focusing region on the order of the skin depth
- Focusing varies but may not compromise divergence/emittance growth

Accelerating force

- e+ can accelerate at the front
- Beam loading is possible
- Energy spread growth can be controlled

Positrons gain 8 GeVs in 118 cm with low energy spread and low divergence (emittance)

Driver: **IO GeV; 3.4 nC;** σ_z =23 µm; no emittance

Positron acceleration/focusing is limited by the driver slowdown.

Drivers with higher charges may not lead to higher final energies considering the same density.

Approach to realise scheme without ring e- drivers: Nonneutral fireball beam

Scheme could be realised superimposing Gaussian e- driver with e+ witness

Jorge Vieira | FACET II Science Workshop, SLAC | October 14 2015

Fireball positron acceleration could double the energy of some of the positrons in 85 cm

Jorge Vieira | FACET II Science Workshop, SLAC | October 14 2015

IJÌ

Two paths for positron acceleration in plasmas: enhance electron density or **create a hollow plasma channel**

On-axis electron filament

- On-axis, high density plasma e-filaments focus positrons.
- Can we create positron focusing structures in a controllable way?

from J. Vieira et al PRL (2014)

ବି

Hollow plasma channel

- Remove plasma electrons and plasma ions to form a hollow channel.
- What are the conditions for a driver to create its own hollow channel?

A positron beam driver can create a self-driven plasma hollow channel for positron acceleration

L.D. Amorim et al (2015)

Simulations show hollow channel formation and positron bunch energy gain inside the hollow channel

L.D. Amorim et al (2015)

Jorge Vieira | FACET II Science Workshop, SLAC | October 14 2015

Simulations show hollow channel formation and positron bunch energy gain inside the hollow channel

Positron focusing and accelerating fields in hollow channel created by narrow drivers

L.D. Amorim et al (2015)

Key wakefield properties

Non-linear accelerating wakefields:

- Peak field in the hollow channel region $\sim 0.7 E_0$
- Sawtooth shape

Positron focusing forces:

- Mainly focusing for lengths of ~ λ_P = 2 π inside the channel
- Focusing due to plasma e⁻s in the channel region

SLAC positron bunches could self-drive a hollow plasma channel and are close to the onset for positron acceleration

L.D. Amorim et al (2015)

Plasma parameters			Beam parameters			
n₀ [cm⁻³]	k _p -Ι [μm]	σ _z [μm]	σ _r [μm]	# positrons	Charge [nC]	
1,00E+15	167,92	1007,50	20,15	2,57E+11	4,11E+01	
2,50E+15	106,20	637,20	12,74	I,63E+11	2,60E+01	
5,00E+15	75,09	450,57	9,01	I,I5E+II	I,84E+0I	
7,50E+15	61,31	367,89	7,36	9,39E+10	I,50E+0I	
1,00E+16	53,10	318,60	6,37	8,13E+10	I,30E+0I	
2,50E+16	33,58	201,50	4,03	5,14E+10	8,22E+00	
5,00E+16	23,75	142,48	2,85	3,63E+10	5,82E+00	
7,50E+16	19,39	116,34	2,33	2,97E+10	4,75E+00	
I,00E+17	16,79	100,75	2,02	2,57E+10	4,11E+00	

0

()

Conclusions & Future work

Positron accelerations using doughnut electron beam drivers

- Positron focusing and acceleration on axis
- Co-propagating non-neutral e-e+ fireball results in doughnut e- beam profile
- New types of hosing could appear.
- Beam dynamics with emittance and energy spreads need to be examined

Hollow plasma channels driven by tightly focused positron bunches

- Hollow plasma channel with positron focusing and acceleration regions
- Parameters could be realised at lower plasma densities
- Could also be a first demonstration of background plasma ion motion.

