# **Emergency information**



#### Fire

- Evacuate. Be aware of building exits.
- Follow building residents to the assembly area.

SI AC

• Do not leave until you are accounted for, and have been instructed to.

#### Earthquake

- Remain in building: duck, cover, and hold position.
- When shaking stops: evacuate building via a safe route to the assembly area.
- Do not leave until you are accounted for, and have been instructed to do so.

# Please remember...

- Vehicle-related accidents can and have happened here.
- We have uncommon hazards including construction projects, industrial vehicles, electric carts, and pedestrians any time of the day or night.
- Please obey the traffic rules, look out for bicyclists and pedestrians and exercise caution – especially when backing up.

# FACET-II Overview

FACET-II Science Opportunities Workshops

Mark J. Hogan October 12-16, 2015





## Agenda for Today

| Monday Tuesday | Wednesday Thursday Friday                |                  |                  |
|----------------|------------------------------------------|------------------|------------------|
| □ Start Time   | Presentation                             | Presenter        | Affiliation      |
| 08:30          | Breakfast                                |                  |                  |
| 09:00          | Welcome                                  | Lia Merminga     | SLAC             |
| 09:10          | FACET-II overview                        | Mark Hogan       | SLAC             |
| 09:30          | FACET-II accelerator design              | Glenn White      | SLAC             |
| 10:10          | FLASHforward project                     | Jens Osterhoff   | DESY             |
| 10:45          | Break                                    |                  |                  |
| 11:05          | Injector R&D                             | Renkai Li        | SLAC             |
| 11:25          | Comb-beam generation                     | Massimo Ferrario | INFN             |
| 11:45          | Two-bunch generation and dynamics        | Zhen Zhang       | Tsinghua U./SLAC |
| 12:05          | Ramped beam generation                   | Philippe Piot    | NIU/Fermilab     |
| 12:25          | Lunch                                    |                  |                  |
| 13:30          | Beam collimation and shaping             | Yuantao Ding     | SLAC             |
| 13:50          | Microbunching instability                | Daniel Ratner    | SLAC             |
| 14:10          | COTR mitigation by imaging at 13 nm      | Alex Murokh      | RadiaBeam        |
| 14:30          | Skew quad to diagnose CSR effects        | Paul Emma        | SLAC             |
| 14:50          | Break                                    |                  |                  |
| 15:10          | Dielectric-based beam manipulation       | John Power       | ANL              |
| 15:30          | THz generation & enhancement at FACET-II | Ziran Wu         | SLAC             |
| 15:50          | THz generation with multi-foil           | Gennady Stupakov | SLAC             |
| 16:10          | Attoscope                                | Gerard Andonian  | RadiaBeam/UCLA   |
| 16:30          | General Discussion                       |                  |                  |
| 17:30          | Adiourn                                  |                  |                  |

-SLAC



Plasma wakefield

machines — the particle accelerators of the future? PAGES 40 & 92 FACET: A National User Facility based on high-energy beams and their interaction with plasmas and lasers

- Facility hosts more than 150 users, 25 experiments
- One high profile result a year
- Priorities balanced between focused plasma wakefield acceleration research and diverse user programs with ultra-high fields



# **FACET History & Goals**





#### **Primary Goal:**

Demonstrate a single-stage high-energy plasma accelerator for electrons.

- Meter scale
- High gradient
- Preserved emittance
- Low energy spread
- High efficiency

#### Timeline:

- Commissioning (2011-2012)
- Drive & witness e<sup>-</sup> bunch (2012-2013)
- Optimization of e<sup>-</sup> acceleration (2013-2015)
- First high-gradient e<sup>+</sup> PWFA (2014-2016)

# **Planning for FACET-II**

- FACET will stop running in April 2016
- Lab will then salvage needed equipment from first kilometer of linac
- Then will make it cold, dark and dry...and completely clean it out
- Over the next few years will build a new superconducting linac for LCLS-II
- At the same time we will upgrade middle kilometer for FACET-II



## **FACET-II Plan**



#### Timeline:

- Nov. 2013, FACET-II proposal, Comparative review
- CD-0 Aug. 2015
- CD-1 Oct. 2015
- CD-2/3A Aug. 2016
- CD-3B Dec. 2016
- CD-4 2022
- Experimental program (2019-2026)

#### **Key R&D Milestones:**

- Staging with witness injector
- High brightness beam generation, preservation, characterization
- e+ acceleration in e- driven wakes
- Generation of high flux THz and gamma radiation

#### Three stages:

- Photoinjector
- e+ damping ring
- "sailboat" chicane
- (e- beam only)
- (e+ or e- beams)
- FY18-20 (e+ and e- beams) FY19-20

FY17-18

SLAC

FACET-II will enable research for a broad user community See talk by M.Hogan and Workshops: Oct.12-19 2015, SLAC

# Nominal Beam Parameters Driven by the Needs of the Plasma Wakefield Accelerator Program

High gradients need high density plasmas

- ~10<sup>17</sup> e<sup>-</sup>/cm<sup>3</sup>
- >10GeV/m acceleration
- >MT/m focusing



FACET-II Needs:

- Bunch dimensions on the order of plasma skin depth <20µm</li>
- nC bunch charge for blow-out with large wake amplitude & good transport
- Peak current approaching  $I_A \sim 10 kA$  for strong wakes
- Need meter-scale, uniform high-density plasmas for extended interaction
- 10GeV for positron production, stable delivery of high-current beams

FACET is the only facility in the world where users can do meter-scale high-gradient plasma acceleration

### **Proposed Key Performance Parameter Summary**

SLAC

| Description of Scope               | Units | Threshold<br>KPP | Objective<br>KPP |
|------------------------------------|-------|------------------|------------------|
| Beam Energy                        | [GeV] | 9                | 10               |
| Bunch Charge (e-/e+)               | [nC]  | 0.1/0.1          | 2/1              |
| Final Normalized Emittance (e-/e+) | [µm]  | 50/50            | 20/20            |
| Bunch Length (e-/e+)               | [µm]  | 100/100          | 20/20            |

- The threshold KPPs are the minimum parameters against which the project's performance is measured when complete
- The objective KPPs are the desired operating parameters that the project will design to with the intent that those may be achieved during steady operation
- Taking performance from Threshold to Objective requires operations staff time to optimize accelerator performance, but does not require further capital investment

Objective KPP will support the majority of the proposed science program FACET-II flexibility allows other optimizations to meet user needs

#### FACET-II Has Flexibility to Deliver a Range of Parameters Tailored to the Needs of Individual Experiments

|    | Experiment                                      | Stage 1 | Stage 2 | Stage 3 | Two<br>bunches | High<br>charge | Witness<br>injector | Compton<br>source |
|----|-------------------------------------------------|---------|---------|---------|----------------|----------------|---------------------|-------------------|
| 1  | PWFA with electrons                             | X       |         |         | x              |                |                     |                   |
|    | High Transformer Ratio                          | X       |         |         |                | X              | X                   |                   |
|    | Super-high brightness beams                     | X       |         |         |                | X              |                     |                   |
| 2  | PWFA with positrons                             |         | X       |         | X              |                |                     |                   |
|    | Physics of proton driven PWFA                   |         | X       |         |                |                |                     |                   |
|    | Physics of proton driven PWFA w electrons       |         |         | X       |                |                | X                   |                   |
| 3  | PWFA with low charge, high brightness electrons | X       |         |         |                |                |                     |                   |
| 4  | Trojan horse                                    | X       |         |         |                | X              |                     |                   |
| 5  | Dielectric WFA                                  | X       |         |         | X              |                |                     |                   |
| 6  | Beams of Intense Gamma rays                     | X       |         |         |                | X              |                     | X                 |
| 7  | Gamma-Gamma Collider                            |         |         | X       |                | X              |                     | X                 |
| 8  | Positrons from Compton Beam                     | X       |         |         |                | X              |                     | X                 |
| 9  | BIG - Gamma ray source                          | X       |         |         |                | X              |                     | X                 |
| 10 | High brightness muon beams                      | X       |         |         |                | X              |                     | X                 |
| 11 | Laboratory Astrophysics                         |         |         | X       |                |                |                     |                   |
| 12 | CLIC studies                                    | X       |         | X       |                |                |                     |                   |
| 13 | FEL R&D                                         | X       |         |         |                |                |                     |                   |
| 14 | THz & Magnetic switching                        | X       |         |         |                | X              |                     |                   |
| 15 | National Security                               | X       |         |         |                | X              |                     | X                 |

#### **Variety of Beam Parameters Possible**

SLAC

#### Table 4.1. Nominal electron beam parameters at the FACET IP and their operational ranges.

| Parameter                                                   | Symbol              | Unit | Nominal | Range      |
|-------------------------------------------------------------|---------------------|------|---------|------------|
| Final electron energy                                       | $E_{f}$             | GeV  | 10.0    | 4.0 - 13.7 |
| Initial electron bunch charge                               | $Q_0$               | nC   | 2       | 2-5        |
| Final electron bunch charge                                 | $Q_f$               | nC   | 2       | 0.7 - 5    |
| Pulse repetition rate                                       | $f_{rep}$           | Hz   | 30      | 1 - 30     |
| Number of electron bunches per RF pulse                     | $N_b$               | -    | 1       | 1 - 2      |
| Electron transverse core beam size (x/y, rms)               | $\sigma_x/\sigma_y$ | μm   | 14/13   | 6-20/6-13  |
| Final electron peak current                                 | Ipk                 | kA   | 15      | 10-130     |
| Final electron bunch length (rms)                           | $\sigma_{\!Z}$      | μm   | 17      | 1 - 20     |
| Electron rms energy spread (rms)                            | $\sigma_E/E$        | %    | 0.4     | 0.4 – 1.8  |
| Max. avg. e beam power (10 GeV, 5 nC, 1 bunch/pulse, 30 Hz) | $P_b$               | kW   | 1.5     | 0.1 - 4.2  |
| Dump design for avg. <i>e</i> beam power                    | $P_D$               | kW   | 5       | -          |

#### **Variety of Beam Parameters Possible**

| Parameter                                                      | Symbol              | Unit | Nominal | Range      |
|----------------------------------------------------------------|---------------------|------|---------|------------|
| Final positron energy                                          | $E_{f}$             | GeV  | 10      | 4-13.7     |
| Initial positron bunch charge from DR                          | $Q_0$               | nC   | 1       | 1 - 2      |
| Final positron bunch charge at IP                              | Q                   | nC   | 1       | 0.6-2      |
| Pulse repetition rate                                          | $f_{rep}$           | Hz   | 5       | 1 - 5      |
| Number of positron bunches per RF pulse                        | $N_b$               | -    | 1       | 1          |
| Positron transverse core beam size (x/y, rms)                  | $\sigma_x/\sigma_y$ | μm   | 20/11   | 10-25/7-11 |
| Positron peak current                                          | Ipk                 | kA   | 6       | 6-15       |
| Positron bunch length (rms)                                    | $\sigma_{\!Z}$      | μm   | 17      | 7-20       |
| Positron rms energy spread                                     | $\sigma_E/E$        | %    | 0.8     | 0.5 - 1.5  |
| Max. avg. <i>e</i> beam power (10 GeV, 1nC, 5Hz,1 bunch/pulse) | $P_b$               | W    | 50      | 5-140      |

#### Table 4.2. Nominal positron beam parameters at the FACET IP and their operational ranges.

#### FACET-II Stage I FY17-18



- **Goal:** deliver compressed electron beam to experiments in S20
- Major upgrade: Electron beam photoinjector in Sector 10
- Scope: Injector, Shielding wall in S10, X-band linearizer, Bunch Compressors in S11 (BC1) and S14 (BC2), beam diagnostics, upgrade to experimental area



#### FACET-II Stage II FY18-19

- **Goal:** deliver compressed positron beam to experiments in S20
- Major upgrade: positron damping ring
- **Scope:** damping ring, positron bunch compressor & return line



#### FACET-II Stage III FY19-20

- **Goal:** deliver electron and positron beams to experiments in S20
- Major upgrade: Sailboat chicane
- Scope: Sailboat chicane



## **High-Level Performance Goals and Design**



| Research goal                                                                                                                                        | Design                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| High-Intensity driver to study Plasma Wakefield<br>Acceleration (PWFA) relevant to Linear Colliders<br>and user programs with intense electron beams | Photoinjector, 10 GeV linac,<br>3 stage bunch compressors |
| Positron PWFA and user programs with intense positron beams                                                                                          | Positron Damping Ring                                     |
| Acceleration of positrons in wake of electron drive beams                                                                                            | Sailboat chicane                                          |
| Studies of PWFA staging                                                                                                                              | Compatibility with future witness injector installation   |
| High intensity gamma ray source, gamma-<br>gamma collider studies                                                                                    | Compatibility with future<br>Compton backscattering       |

FACET-II design has been motivated by needs of user community

## **FACET-II Science Opportunities Workshops**



- October 12-16, 2015
- Five Days
  - Five Workshops (one per day)

- Dual WG Leaders
  - SLAC & non-SLAC

- Discuss scientific opportunities
- Refine the technical requirements
- Ensure maximum impact at startup and into the future

| Oct<br>12-16 | ober<br>5, 2015 | WG Leaders                                              | Workshop                                   |
|--------------|-----------------|---------------------------------------------------------|--------------------------------------------|
| Мо           | nday            | Pietro Musumeci (UCLA)<br>Zhirong Huang (SLAC)          | Accelerator Physics of Extreme Beams       |
| Tue          | sday            | Ioan Tudosa (U. Penn.)<br>Jerome Hastings (SLAC)        | Material Interactions with Extreme Fields  |
| Wedr         | nesday          | Andrei Seryi (JAI)<br>Jean-Pierre Delahaye (SLAC)       | Plasma Acceleration Based Linear Colliders |
| Thu          | rsday           | James Rosenzweig (UCLA)<br>Erik Hemsing (SLAC)          | Plasma Acceleration Based XFELs            |
| Fri          | iday            | Vladimir Litvinenko (Stonybrook)<br>Carsten Hast (SLAC) | Application of Compton Based Gamma Rays    |

## Agenda for Today

| Monday Tuesday | Wednesday Thursday Friday                |                  |                  |
|----------------|------------------------------------------|------------------|------------------|
| Start Time     | Presentation                             | Presenter        | Affiliation      |
| 08:30          | Breakfast                                |                  |                  |
| 09:00          | Welcome                                  | Lia Merminga     | SLAC             |
| 09:10          | FACET-II overview                        | Mark Hogan       | SLAC             |
| 09:30          | FACET-II accelerator design              | Glenn White      | SLAC             |
| 10:10          | FLASHforward project                     | Jens Osterhoff   | DESY             |
| 10:45          | Break                                    |                  |                  |
| 11:05          | Injector R&D                             | Renkai Li        | SLAC             |
| 11:25          | Comb-beam generation                     | Massimo Ferrario | INFN             |
| 11:45          | Two-bunch generation and dynamics        | Zhen Zhang       | Tsinghua U./SLAC |
| 12:05          | Ramped beam generation                   | Philippe Piot    | NIU/Fermilab     |
| 12:25          | Lunch                                    |                  |                  |
| 13:30          | Beam collimation and shaping             | Yuantao Ding     | SLAC             |
| 13:50          | Microbunching instability                | Daniel Ratner    | SLAC             |
| 14:10          | COTR mitigation by imaging at 13 nm      | Alex Murokh      | RadiaBeam        |
| 14:30          | Skew quad to diagnose CSR effects        | Paul Emma        | SLAC             |
| 14:50          | Break                                    |                  |                  |
| 15:10          | Dielectric-based beam manipulation       | John Power       | ANL              |
| 15:30          | THz generation & enhancement at FACET-II | Ziran Wu         | SLAC             |
| 15:50          | THz generation with multi-foil           | Gennady Stupakov | SLAC             |
| 16:10          | Attoscope                                | Gerard Andonian  | RadiaBeam/UCLA   |
| 16:30          | General Discussion                       |                  |                  |
| 17:30          | Adjourn                                  |                  |                  |

-SLAC

# **Short Contribution Title Goes Here**

#### Science Challenge/Opportunity

–What is an important open science question in your field that can be advanced by the capabilities of FACET-II?

–What is impeding progress?, Why now – why is this timely?

#### Significance & Impact

-What is the potential broader impact if we can answer this question (i.e. why is it important)?

#### FACET-II Strengths & Challenges

-What is the expected result or key advance from FACET-II? i.e. What essential information or insight might be provided by FACET-II that is not available from other means?

-Highlight essential FACET-II capabilities required



short figure caption or label

# **Experimental Approach**

#### Techniques(s)

–What physical properties will be explored in this research?

-What are the most relevant experimental methods or techniques?

#### • Tools

- -What are the experimental tools required?
- –What are significant additional challenges: beam/plasma/laser requirements, detector requirements, instrumentation R&D etc.?
- Reference any relevant existing tools or highlight needs for further development

#### Alternatives

–What are the most viable other methods being used to address this question?



short figure caption or label

# **Backup Material**

FACET-II Science Opportunities Workshops

Mark J. Hogan October 12-16, 2015





#### **Witness Bunch Injector Tunnel Installation**

- Gun and injector RF placed near last BC3 bend
- Horizontal dog-leg to compress bunch to <10 um
- Quadrupoles focus < 10 um



Witness Bunch Injector concept is a possible solution compatible with FACET-II design

## **Experiment integration**

• Final quad triplet are small permanent magnets (PMQ)



Coordinate with experimenters to design apparatus (e.g. plasma source) to be used with witness bunch injector

## **2-bunch delivery**

- Collimation (current 2-bunch method) has some limitations
- If this cannot satisfy experiment needs, is there a new method?

| Parameter                           | Symbol                | Value         |
|-------------------------------------|-----------------------|---------------|
| Drive Beam Energy                   | E <sub>d</sub>        | 10.0 GeV      |
| Witness Bunch Final Energy          | Ew                    | 100 MeV       |
| rms Transverse Final Spot Size      | $\sigma_x / \sigma_y$ | < 10 / 10 um  |
| rms Longitudinal Final Bunch Length | σ <sub>z</sub>        | < 10 um       |
| Final Bunch Charge                  | Q <sub>f</sub>        | 100 pC        |
| Final Peak Current                  | I <sub>pk</sub>       | 3,000 A       |
| Final Beta Functions                | $\beta_x / \beta_y$   | 5 x 5 mm      |
| System Length                       | S                     | 18 m          |
| Injection Bend Angle                | Φ                     | 25.78 degrees |

Table 10.2: Key parameters and features of the witness bunch injector design

Could a new injector in sector 20 provide witness bunch for wakefield experiments?