Application of NRF to Nondestructive Assay of Nuclear Material

Ryoichi Hajima

Japan Atomic Energy Agency

Application of Compton Based Gamma Rays FACET-II Science Opportunities Workshops Oct. 16, 2015

Collaborators

- Quantum Beam Science Center, JAEA
 - Laser Compton Scattered Gamma-ray Research Group
 - T. Hayakawa, T. Shizuma, C.T. Angell,
 - M. Sawamura, R. Nagai, N. Nishimori, M. Omer
 - Advanced Laser Development Group M. Mori
- Integrated Support Center for Nuclear Nonproliferation and Nuclear Security, JAEA
 - M. Seya, M. Koizumi
- KEK
 - H. Kawata, Y. Kobayashi and cERL team
 - J. Urakawa, H. Terunuma, A. Kosuge, T. Akagi
- Kyoto Univ.
 - H. Ohgaki
 - Osaka Univ.
 - M. Fujiwara

Work supported by:

- > A government (MEXT) subsidy for strengthening nuclear security (R. Hajima),
- Photon and Quantum Basic Research Coordinated Development Program from the MEXT (N. Terunuma)
- Funds for Integrated Promotion of Social System Reform and Research and Development (H. Ohgaki)

- principle of NRF-NDA
- Nuclear security
- Nuclear safeguards
 - Branch transition NRF
 - Cryo-NRF
 - Integral Resonance Transmission
 - Demo exp. for debris in a TMI-2 container
- LCS X-ray generation at Compact ERL

Laser Compton Scattering (LCS)

✓ Pencil like beam

Energy Tunable & quasi-monochromatic
 Polarized (linear and circular)

Nondestructive Detection & Measurement of Nuclear Material

SNM: special nuclear material

Experimental Demonstration - nondestructive detection of isotope

N. Kikuzawa et al., APEX 2, 036502 (2009).

T. Hayakawa et al., RST 80, 045110 (2009).

H. Toyokawa et al., JJAP 50, 100209 (2011).

T. Shizuma et al., RSI 83, 015103 (2011).

Nuclear Security

References:

H. Ohgaki et al., J. Korean Phys. Soc. 59, 3155 (2011).

I. Daito et al., J. Plasma Fusion Res. 88, 553 (2012) R. Hajima et al., IPAC-2013

I. Daito et al., Proc. IEEE-NSS (2014)

Nuclear Security Application

Possible Terrorism = Nuclear Material Hidden in a Cargo

Neutron/gamma-ray hybrid system

H. Ohgaki et al., J. Korean Phys. Soc. 59, 3155 (2011).

R&D Program (2010-2014) conducted by Kyoto U. and JAEA

Nuclear Material Detection by LCS γ -ray

- Racetrack Microtron (250 MeV)
- Laser system (Nd:YAG 2 ω)

PoP experiment at JAEA

Laser pulse compression

I. Daito et al., J. Plasma Fusion Res. 88, 553 (2012) R. Hajima et al., IPAC-2013 1 Nd:YAG laser 0.8 reflectivity beam dump 0.6 HWP SBS reflectivity = 80% beam expander TFP 0.4 TFP isolator 0.2 QWP 12 GHz Photo-Diode TFP (temporal profile) CCD 0 8ns pulse γ -ray generation 100 0 200 300 400 500 Laser input pulse (mJ) SBS cell 0.20 200ps pulse 0.15 focusing lens SBS cell (f=750mm) compressed pulse 1.5 m 200 ps (FWHM) 0.10 SBS: Stimulated Brillouin Scattering 0.05 2x 1.5-m SBS cells with FC-40 Fluorinert 0.00 12 5E-08 5.5E-08 6E-08 6.5E-08 time (sec)

Evaluation of gamma-ray flux

Gamma-ray flux has been evaluated by two methods: (1) Total energy measurement by LYSO (2) Compton scattering from an AI plate measured by GSO

I. Daito et al., J. Plasma Fusion Res. 88, 553 (2012) R. Hajima et al., IPAC-2013

Microtron: 150 MeV, 45 pC, 20 ps (FWHM)

Laser:

1064 nm, 178 mJ, 8 ns → 200 ps f=2.3 m, angle= 1.5 deg.

LYSO \rightarrow (6.3±1.5) x 10³ /shot GSO \rightarrow (5.58±0.24) x 10³ /shot

PoP experiment: Detection of Ag

I. Daito et al., Proc. IEEE-NSS (2014)

PoP experiment: Detection of Ag

I. Daito et al., Proc. IEEE-NSS (2014)

Peak area of Ag NRF signals, $(2.2 \pm 1.1) \times 10^2$, is consistent with an expected signals, 1.1×10^2 , from a Geant4 simulation.

Nuclear Safeguards

References:

R. Hajima et al.,

Proposal of nondestructive radionuclide assay using

a high-flux gamma-ray source and nuclear resonance fluorescence,

J. Nucl. Sci. Tech. 45, 441 (2008).

T. Hayakawa et al.,

Nondestructive assay of plutonium and minor actinide in spent fuel using nuclear resonance fluorescence with laser Compton scattering gamma-rays NIM-A 621, 695 (2010).

T. Shizuma et al.,

Statistical uncertainties of nondestructive assay for spent nuclear fuel by using nuclear resonance fluorescence NIM-A 737, 170 (2014).

Non-Destructive Assay of ²³⁹Pu

²³⁹Pu Small Fraction of Spent Fuel

Challenge: Assay ²³⁹Pu Nondestructively in spent nuclear fuel Goal: Measure ²³⁹Pu mass to 1%

"Looking for a needle in a haystack"

Two Measurement Methods

Spent Fuel NDA simulation

Spent fuel with 1% PuO₂

Statistical error of 2% with 4000-sec measurement

But the simulation does not include elastic scattering – Rayleigh, nuclear Thomson and Delbruck scattering

Elastic scattering: ~0.5 mb x 1 keV bin = ~5 eV b

NRF: 10-50 eV b

Detection of decay branch in NRF

Cryo NRF

References:

C.T. Angell et al., "Temperature Effects on Non-destructive Assay using Integral Resonance Transmission" Annual Meeting of Atomic Energy Society of Japan, 2013.

C.T. Angell, "Improving Efficacy and Enabling in situ Thermometry Using Cryogenic Transmission Nuclear Resonance Fluorescence", Submitted to NIM-B

Transmission NRF (Single Resonance)

Decrease in signal rate proportional to upstream ²³⁹Pu mass.

Effect of Temperature on Resonance Width – General

- Lower temperature reduces the resonance width
 Doesn't change area
- Debye Temperature, θ_{D} , "temperature" of lattice vibrations
- Asymptotic limit to how much you can narrow a resonance
- Debye Temperature depends on chemical form of material

Effect of Temperature on Absorption Measurement

• For absorption must consider integral of absorbed flux profile X line shape.

Reducing only the Witness target temperature can improve sensitivity

Cryo-NRF applications

- Reduction of measurement time in NRF-NDA
 - 40% reduction with a witness target at 77 K
 - 80% reduction with absorption and witness targets at 77 K
- In situ thermometry
 - Transmission NRF with two witness target temperatures, 77 K and 1000 K, for example
 - Unknown temperature of absorption target can be identified
 - Possible applications: internal combustion engine, chemical reactor, plasma ions

Integral Resonance Transmission Method

References:

C.T. Angell et al.,

"Demonstrating the Integral Resonance Transmission Method: Conceptual and Experimental Studies", Proc. Annual Meeting of INMM (2015).

C.T. Angell, R. Hajima and B.J. Quiter. "Non-destructive assay of spent nuclear fuel using the integral resonance transmission technique" Submitted to Annals of Nuclear Energy

C.T. Angell et al., "Branching and fragmentation of dipole strength in 181Ta" To be submitted

Integral resonance transmission (IRT)

Uses multiple resonances :

Retains Isotopic Sensitivity

- Each resonance carries information on absorption (i.e. mass)
- Requires monoenergetic γ-ray beam
 - Removes unrelated beam background from down scattering related with broad spectrum γ -ray sources
- Enables the use of scintillator detectors
 - Overcomes final problem of count rate at witness station
 - Count rate limit 2 orders of magnitude higher than HPGe

Depletion from multiple resonances in ²³⁹Pu

Performance estimate

Assumption	
Measurement Time	8 hours
Areal density -BWR	64 g/cm ²
Flux	10 ⁷ γ/(s eV)
²³⁹ Pu [% mass]	1%
²³⁸ U [% mass]	99%
Witness Plate	1 cm
²³⁹ Pu I _{cs}	13.5 eV b

Beam parameters are from estimated performance of the ERL.

Results

Transmission NRF experiment overview

- Transmission NRF measurements done to
 - A. Validate IRT technique (¹⁸¹Ta, ²³⁹Pu)
 - B. Demonstrate assay feasibility for a TMI-2 canister (²⁷AI)
- All transmission NRF measurements are similar
 - A. Two measurements: with and with/out absorption target
 - B. Decrease in NRF scattering from witness target proportional to absorbing isotope mass
- All measurements used an identical setup:

IRT technique demonstrated with ¹⁸¹Ta

- 2.27 MeV: previously reported states all confirmed, and resonance absorption observed.
- 2.75 MeV: absorption from unresolved states clearly seen, demonstrating the IRT method.
 - All previously reported states confirmed and resonance absorption observed.

Energy (Mev)	Absorption Target	$R(n_a)$
2.27	Ta (2 cm)	0.3
2.75	Ta (3 cm)	0.1

Demonstration for TMI-2 containers

Reference:

C.T. Angell et al., "Demonstration of a transmission nuclear resonance fluorescence measurement for a realistic radioactive waste canister scenario" NIM-B 347, 11 (2015)

LCS γ -ray for Fukushima

Demonstration for Debris in a TMI-2 container

Demonstration for Debris in a TMI-2 container

Verified NRF transmission feasible for TMI-2 container!

C.T. Angell et al., to be published

Experiment at Compact ERL

References:

T. Akagi et al., Proc. IPAC-2014, p.2072 A. Kosuge et al., Proc. IPAC-2015, TUPWA-66

- R. Nagai et al., Proc. IPAC-2015, TUPJE002
- S. Sakanaka et al., Proc. IPAC-2015, TUBC1

New generation of LCS Gamma-ray Sources

T-REX @ Lawrence Livermore Natl. Lab. 250 MeV Linac $E_{\gamma} = 1-2 \text{ MeV}$ Test Facility for Nuclear Security Applications

ERL-based LCS gamma-ray @ KEK-JAEA Test Facility for Nuclear Material Safeguards Applications

LCS Experiment at Compact ERL

Demonstration of technologies relevant to future ERL-based LCS sources

Work supported by:
A government (MEXT) subsidy for strengthening nuclear security (R. Hajima, JAEA)37Photon and Quantum Basic Research Coordinated Development Program from the MEXT (N. Terunuma, KEK)37

Laser Enhancement Cavity

Developed by T. Akagi (KEK)

T. Akagi et al., Proc. IPAC-2014, p.2072 A. Kosuge et al., Proc. IPAC-2015, TUPWA-66

Can store two beams independently

Fast polarization switch at 325 MHz or Double the laser power at LCS (Single laser for the first experiment)

38

Beam Optics for the LCS

- Low-beta insertion for small beam sizes at IP
- Transport beams to the dump with small beam losses

Beam optics was established

IP: interaction point

Bunch charge: 0.5 pC/bunch, Normalized emittances: $(\varepsilon_{nx}, \varepsilon_{ny})=(0.47, 0.39)$ mm·mrad

X-ray Produced by LCS

Parameters of electron beams:

X-ray imaging with a LCS beam

An X-ray image of a hornet taken with LCS-produced X-ray. Detector: HyPix-3000 from RIGAKU. Detector was apart from the sample by approx. 2.5 m.

Comparison with a simulation

Flux

consistent within a factor of 2.5

Bandwidth

detector resolution = 153eV@5.9keV (Fe-55)

Assuming quadratic nature for convolution of width, the energy width of the LCS photon beam is estimated to be

 $\sqrt{173^2 - 153^2} = 81 \text{ eV}$

We consider the detector resolution is not enough. We plant to make another experiment with a crystal monochromator.

Summary

- There are strong demands for nuclear security and safeguards technologies in the world
- NRF is one of the promising processes to realize nondestructive detection/measurement of nuclear material
- R&D's on NRF-NDA have been carried out and still continue. We still have a large room to improve the system.
- High-flux gamma source is a key facility for
 - R&D's of measurement methods
 - acquisition of missing nuclear data (minor actinides, especially)
 - exploring other NRF applications, in situ thermometry for example