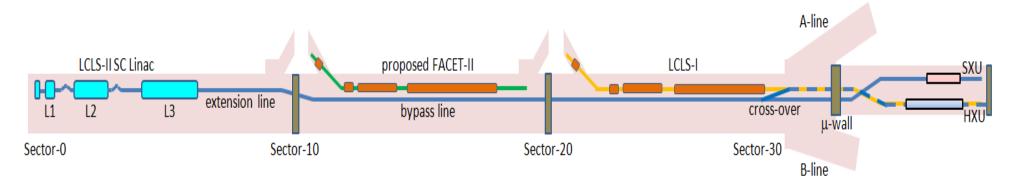
Emergency information

Fire

- Evacuate. Be aware of building exits.
- Follow building residents to the assembly area.
- Do not leave until you are accounted for, and have been instructed to.


Earthquake

- Remain in building: duck, cover, and hold position.
- When shaking stops: evacuate building via a safe route to the assembly area.
- Do not leave until you are accounted for, and have been instructed to do so.

SLAC

Please remember...

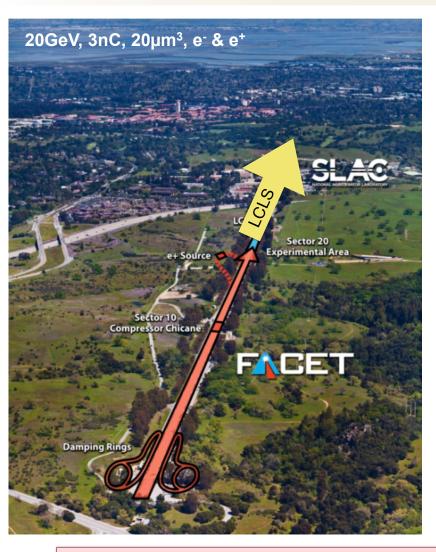
- Vehicle-related accidents can and have happened here.
- We have uncommon hazards including construction projects, industrial vehicles, electric carts, and pedestrians any time of the day or night.
- Please obey the traffic rules, look out for bicyclists and pedestrians and exercise caution – especially when backing up.

FACET-II Science Opportunities Workshops

SLAC National Accelerator Laboratory

BIG, a Future Gamma-Ray Source at FACET-II

12-16 October, 2015


Menlo Park, CA

V. Yakimenko

FACET Project History

ARRA Funded Project \$14.6M + \$12M AIP

Primary Goal:

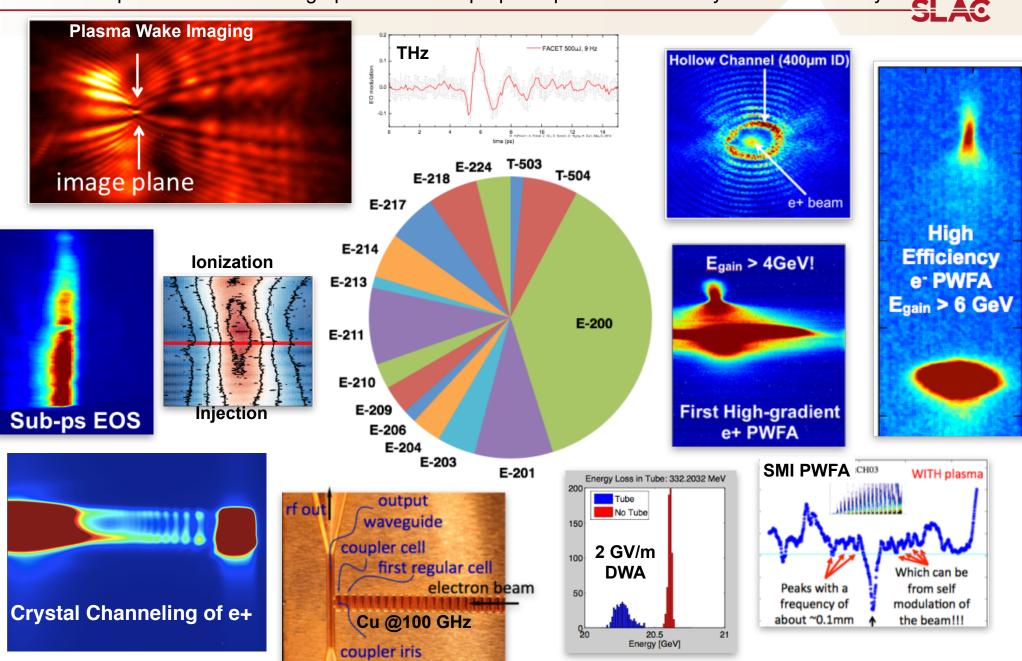
 Demonstrate a single-stage high-energy plasma accelerator for electrons

Timeline:

- CD-0 2008
- CD-4 2012, Commissioning (2011)
- Experimental program (2012-2016)

A National User Facility:

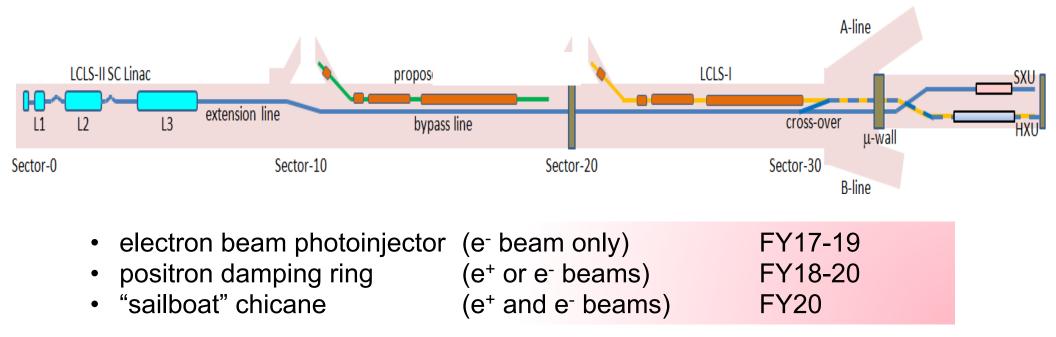
- Externally reviewed experimental program
- 150 Users, 25 experiments, 8 months/year operation

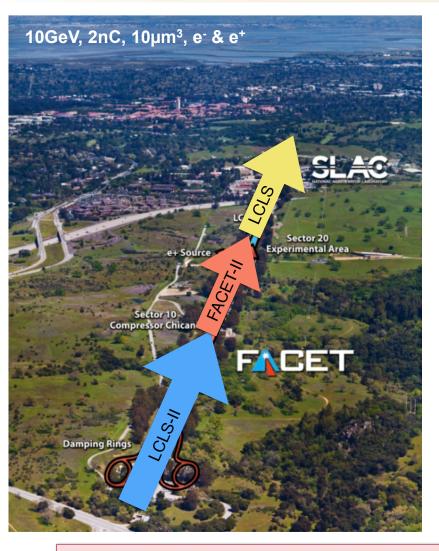

Key PWFA Milestones:

- ✓Mono-energetic e⁻ acceleration
- ✓ High efficiency e⁻ acceleration
- ✓ First high-gradient e⁺ PWFA
- Demonstrate required emittance, energy spread (FY16)

Premier R&D facility for PWFA: Only facility capable of e+ acceleration Highest energy beams uniquely enable gradient > 1 GV/m SLAC

PWFA Staff Participates in Nearly Every FACET Experiment


Proposal selection through peer reviewed proposal process like in any other user facility


FACET-II Science Opportunities, BIG, October 16, 2015

Planning for FACET-II

- FACET will stop running in April 2016
- Lab will then salvage needed equipment from first kilometer of linac
- Then will make it cold, dark and dry...and completely clean it out
- Over the next few years will build a new superconducting linac for LCLS-II
- At the same time we will upgrade middle kilometer for FACET-II

FACET-II Plan

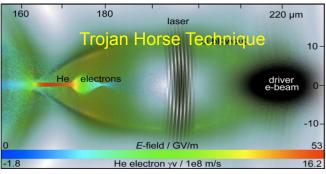
Timeline:

- Nov. 2013, FACET-II proposal, Comparative review
- CD-0 Aug. 2015
- CD-1 Oct. 2015
- CD-2/3A Aug. 2016
- CD-3B Dec. 2016
- CD-4 2022
- Experimental program (2019-2026)

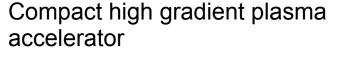
Key R&D Milestones:

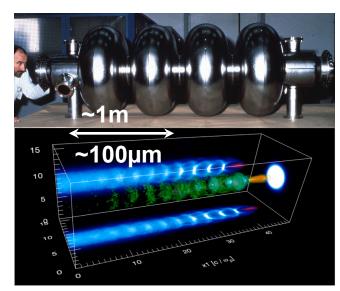
- Staging with witness injector
- High brightness beam generation, preservation, characterization
- e⁺ acceleration in e⁻ driven wakes
- Generation of high flux THz and gamma radiation

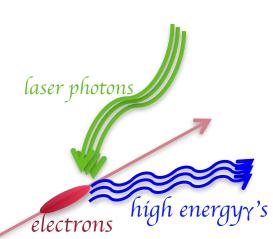
Three stages:


- Photoinjector (e- beam only) FY17-19 • e+ damping ring (e+ or e- beams) FY18-20
- "sailboat" chicane (e+ and e- beams)
- FY19-20

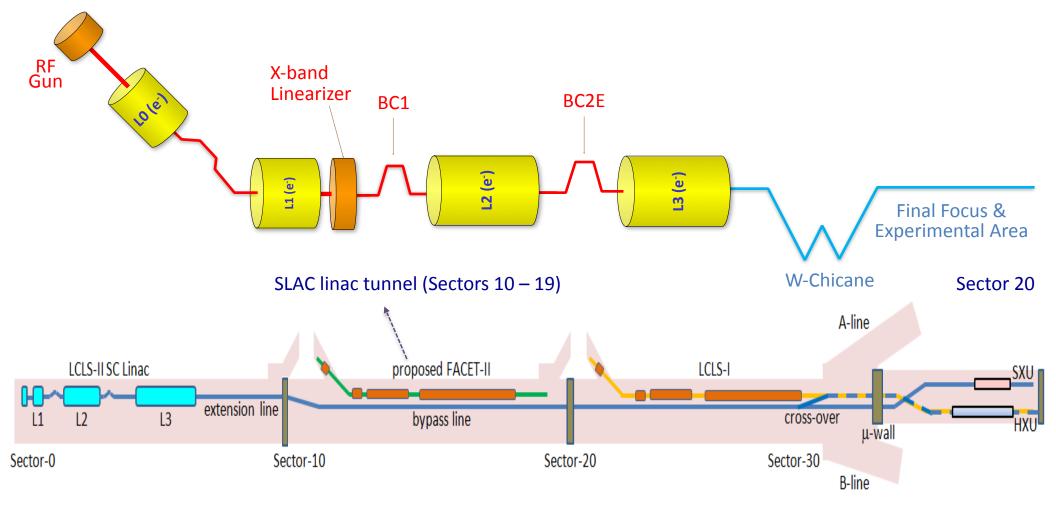
SLAO


FACET-II will enable research for a broad user community See talk by M.Hogan and Workshops: Oct.12-19 2015, SLAC


FACET II: High Gradient Acceleration – High Brightness Beams – Novel Radiation Techniques

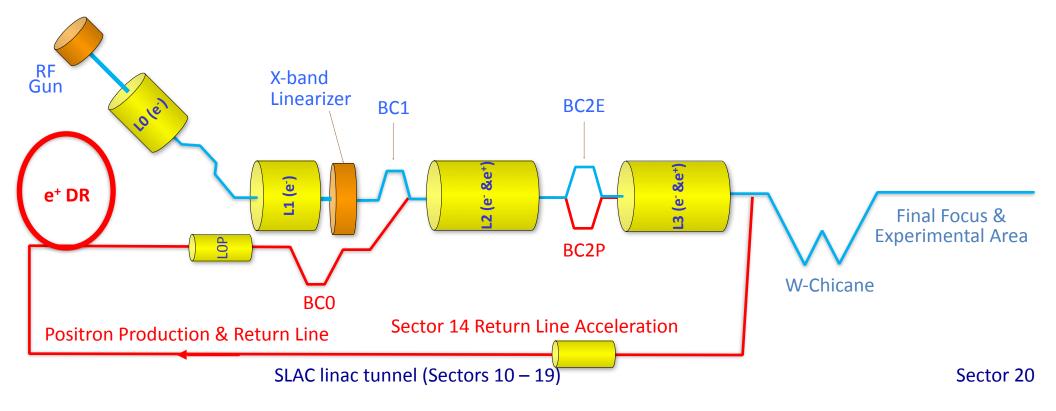

SLAC

Plasma bubble act as ultra-highbrightness electron source with $\epsilon = \sim 10^{-9} \pi \text{ mm mrad}$

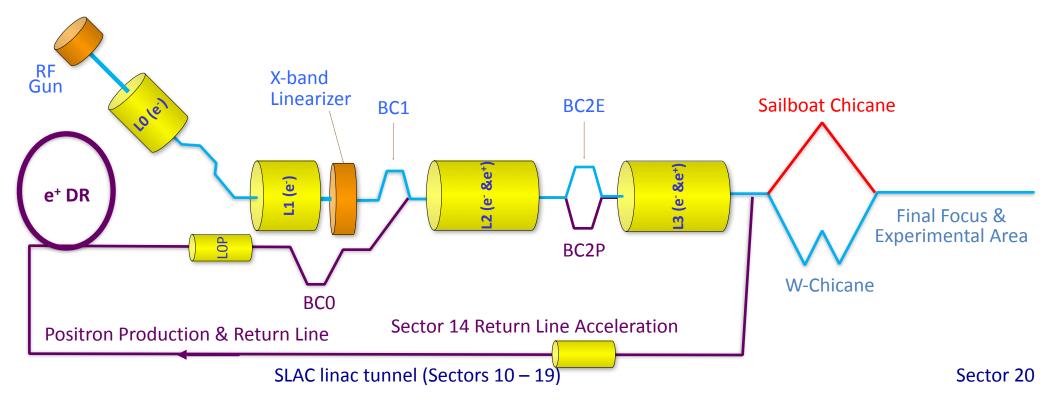


Polarized gamma beams 2 MeV - 4 GeV with high flux 10^{9} - 10^{11} γ/sec for diverse research programs

FACET-II Stage IFY17-19


- **Goal:** deliver compressed electron beam to experiments in S20
- Major upgrade: Electron beam photoinjector in Sector 10
- Scope: Injector, Shielding wall in S10, X-band linearizer, Bunch Compressors in S11 (BC1) and S14 (BC2), beam diagnostics, upgrade to experimental area

FACET-II Stage II FY18-20

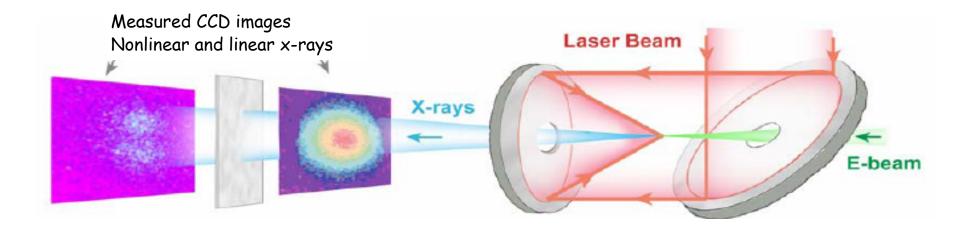

- **Goal:** deliver compressed positron beam to experiments in S20
- **Major upgrade:** positron damping ring
- **Scope:** damping ring, positron bunch compressor & return line

FACET-II Stage III (removed from scope)

- **Goal:** deliver electron and positron beams to experiments in S20
- Major upgrade: Sailboat chicane
- Scope: Sailboat chicane

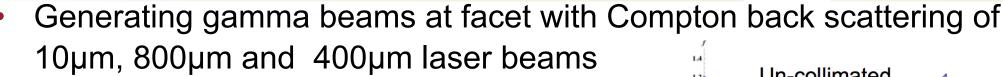
Proposed Key Performance Parameter Summary

SLAC

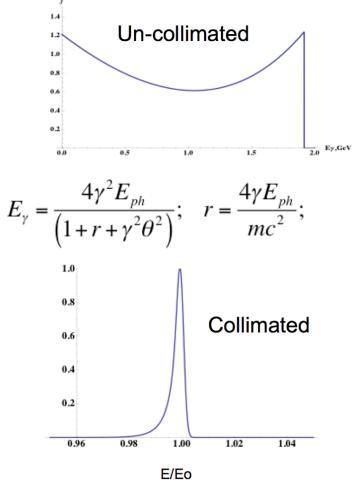

Description of Scope	Units	Threshold KPP	<i>Objective</i> <i>KPP</i>
Beam Energy	[GeV]	9	10
Bunch Charge (e-/e+)	[nC]	0.1/0.1	2/1
Final Normalized Emittance (e-/e+)	[µm]	50/50	20/20
Bunch Length (e-/e+)	[µm]	100/100	20/20

- The threshold KPPs are the minimum parameters against which the project's performance is measured when complete
- The objective KPPs are the desired operating parameters that the project will design to with the intent that those may be achieved during steady operation
- Taking performance from Threshold to Objective requires operations staff time to optimize accelerator performance, but does not require further capital investment

Objective KPP will support the majority of the proposed science program FACET-II flexibility allows other optimizations to meet User needs


Layout of the ICS at BNL

- More than 10⁸ of x-rays were regestered in the experiment N_X/N_{e-} ~0.35.
- 0.35 was limited by laser/electron beams diagnostics
- Interaction point with high power laser focus of ~30µm was tested.
- Nonlinear limit (more then one laser photon scattered from electron) was verified.



SLAO

BIG: Beams of Intense Gamma-rays at FACET-II

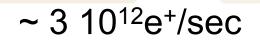
- Energy range: 2 MeV 4 GeV
- Flux 10⁹-10¹¹ /sec;
- Nearly 100% polarization
- Modes of operations:
 - High peak flux single burst per pulse
 - High duty factor trains of ~ 1,000 bunches p
 - White (un-collimated) and mono-energetic (collimated) gamma-rays
 - Linear, circular, elliptical polarization

High-energy beam combined with state of the art laser systems deliver unprecedented combination of gamma-ray energy and flux

Comparing BIG with other Compton Sources

Name	ROKK	GRAAL	LEPS	HIγS	BIG
Location	Novosibirsk, Russia	Grenoble, France	Harima, Japan	Durham, US	Menlo Park, US
Accelerator	VEPP-4M	ESRF	SPRING-8	Duke SR	SLAC
e-beam, GeV	1.4 - 6	6	8	0.24 – 1.2	1-10
γ-beam, GeV	0.1-1.6	0.55-1.5	1.5-2.4	0.001-0.095	0.001-2 (5)
best γ -energy resolution, %	1-3	1.1	1.25	0.8-10	0.1
Maximum total flux, γ /sec	106	3x10 ⁶	5x10 ⁶	3 x10 ⁹ , E<20 MeV 2 x10 ⁸ , E>20 MeV	

BIG is a superior source:


- Few thousand-fold γ -ray energy span from MeV to GeV
- About 10-fold better energy resolution
- Orders of magnitude larger flux
 - two (at energies < 20 MeV)
 - four (at energies > 20 MeV)

Unprecedented intensities and unique time structure open new opportunities in fundamental and applied research

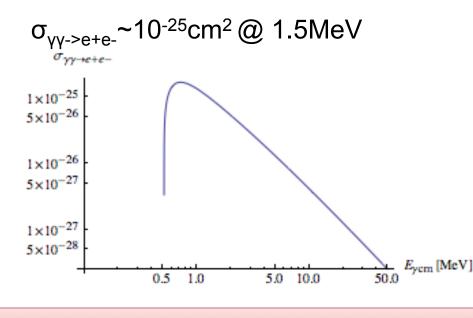
Positron source studies

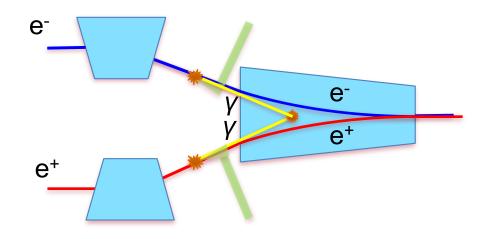
- SLC source
 - (working since 1980's)
- ILC needs
 - (close to solution?)
- LHeC => reduced performance < 4 10¹⁶e⁺/sec
 - (ideas?)
- Facet-II will provide:
 - ~4.10¹¹ γ /sec, tunable 30-150MeV, low divergence
- Facet-II will study:
 - New target ideas: crystal channeling, liquid metal jet...

Want GeV photons to maximize production cross-section and narrow energy spread to limit energy spread of produced positrons

 $\sim 4 \ 10^{14} e^{+}/sec$

	N [µ⁺µ⁻ / sec]	$\epsilon_{\rm x,y}$ / $\epsilon_{\rm z}$
Neutrino factory	10 ¹³ -10 ¹⁴	0.5mm/?? mm
Muon collider	2 x 10 ¹²	25 µm/72 mm
Facet-II	10 ⁶	150 μm/50 μm

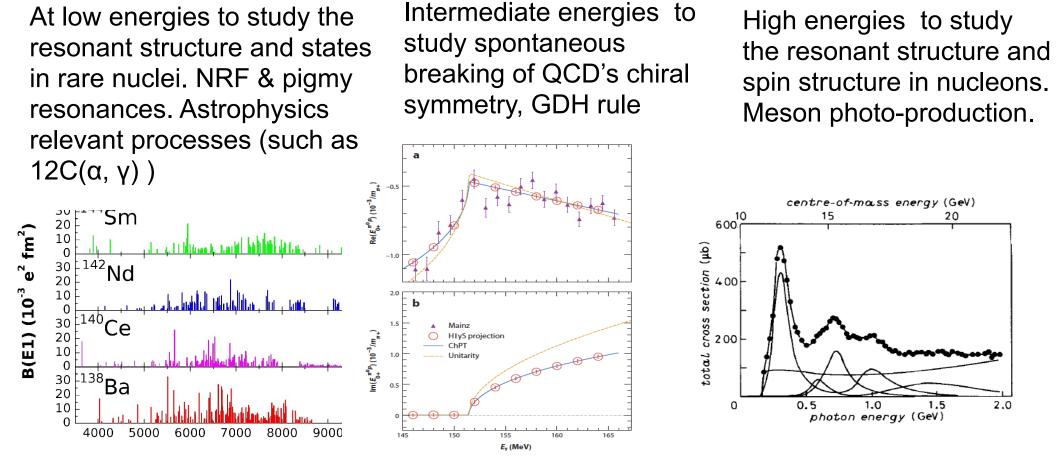

Gamma Gamma collider


 $E_e = 4 GeV$

$$E_v \sim 30$$
 MeV, $\alpha \sim 0.05$

 $E_{vcm} \sim 1.5 \text{ MeV}$

 $L \sim 5 \times 10^{22} \text{ cm}^{-2} \text{ sec}^{-1}$


Will focus on technology research for gamma gamma collider.

Will test for the first time ability to generate e⁺e⁻ pairs with real (not virtual) photons

This would be the first pair creation test using real photons

Nuclear and higher energy physics: three main areas

-SLAC

Broad energy range of polarized gammas opens up many areas of Nuclear Physics investigations

Facet II beams

Beam	Energy [GeV]	ε _{nx} x ε _{ny} [μm x μm]	σ _x x σ _γ [μm x μm]	σ _z x ΔΕ/Ε [μm x %]
5nC e-	10	5 x 5	10 x 10	20 x 0.3
2nC e+	10	30 x 3	20 x 20	20 x 0.5

Lasers	Energy / Power [Joule / TW]	Rep rate [Hz]	т [fs]	λ [μm]
TI: Sapphire	1 / 30	30 (120)	30	0.8
CO ₂ laser	0.3 / 0.3	120	1000	10.2

Gamma beams (Inverse Compton)	Energy [GeV]	Intensity	Rep rate [Hz]
TI: Sapphire	1.8 GeV	10 ¹⁰	30 (120)
CO ₂ laser	150 MeV	10 ¹⁰	30 (120)