MRF Timing System IOC Status

M Davidsaver¹, J Shah¹, E Bjorklund²

NSLSII Brookhaven National Lab¹ LANCSE Los Alamos National Lab²

EPICS Collaboration Meeting Spring '12

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Timing Background

Current Developments

In Depth

Terms

Event

A point in time. Often defined in relation to another point.

Code

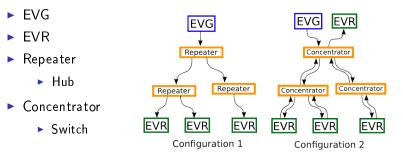
An 8-bit number used to identify an event

► EVG

Event Generator - Broadcasts event codes

► EVR

Event Receiver - Decodes events and takes local actions


・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

MRF

Micro Research Finland Oy - http://www.mrf.fi/

Architecture

Components

Synchronization

- Generator (EVG) accepts input from external RF clock (no PLL)
- 8b10 encoding (16-bit frame)
 - Event link bit rate 20x event code rate
 - \blacktriangleright 500 MHz RF÷4 =125 MHz event×20 =2.5 GHz link
- ► 8-bit event code, 8-bit data (Distributed Bus)
- Each Receiver (EVR) has a PLL tuned ±20 ppm(10 kHz @ 500MHz)

ション ふゆ アメリア メリア しょうめん

Dynamic tuning possible

Global Time Distribution

- Timestamp in two parts: seconds+counter
- Seconds distrubuted as 32-bit unsigned integer
- Counter driven by Event clock, Distributed Bus bit 2, or event code 0x7d

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- One event code loads seconds and zeros counter
- Use PPS from GPS receiver

Plans for NSLSII

- EVG in main computer room with fanouts to all 30 cells, RF, and injector buildings.
- All pulls have same length.
- Each cell has additional local fanouts
- ► VME-EVRRF-230 is standard equipment.
 - ► TTL for general triggers
 - ► CML for special cases. Output fill pattern. Trigger kickers.
- cPCI-EVRTG-300 + GUNRC-300 to trigger electron gun.
- PMC-EVR-230 in some Linux servers (softloc hosts)
 - Use PMC to PCIe carrier board (transparent to software)

うして ふゆう ふほう ふほう うらつ

- More precise timestamps
- One local TTL input

Current Status

- NSLS2 Linac installed, beam commisioning in progress.
- Timing EVG in temporary location in Injector Service Building
- 7 EVRs (3 VME, 3 PMC, 1 EVRTG) in use
- No hardware timestamping
 - Facilities doesn't want temporary hole in roof
- So far no major issues
 - A few bugs (all fixed)
 - Tested recovery from unexpected power outage and RF loss

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

mrfioc2

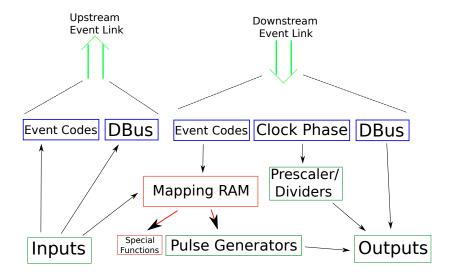
Features:

- Only Base recordtypes
- As dynamic as possible
- PCI support via devLib2
- EVR
 - Dynamic mapping (Mapping RAM)
 - Data buffer Tx/Rx (Compatible with 1.x)
- ► EVG
 - Fully modifible event sequence
 - Timestamp distribution w/o special hardware

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Documentation

Current Status


EVR

- Working with prerelease firmware
- Tested with VME64x, cPCI, and PMC
- ► EVG
 - VME model working
 - cPCI model not supported (no access to hardware)
- Deployed at BNL for NSLSII teststands (LINAC, BPMs, and PS controllers)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Version 2.0.1 released 23 April 2012

Receiver Hardware

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Receiver Hardware

- Programmable pulse generator
 - Triggered by event code(s)
- Phase locked frequency source (F_{evt}/i)
- Global timestamp receiver
 - Wall clock
 - Event code # received
 - Local input
- Local inputs create timestamps or send upstream

うして ふゆう ふほう ふほう うらつ

Available as: VME, cPCI, and PMC

EVR Mapping Ram

- Many-to-many mapping of event code to function
 - Trigger pulse generator
 - Reset prescalers
 - Timestamp functions
- Most cases 1-to-1 (code 17 triggers pulse gen. 4)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Some are small-to-small
- Few are many-to-1 (FIFO, Forwarding)

Mapping Records

- One record per pairing
- Default DB maps 3 events

```
record(longout, "pul4:trig1") {
field(DTYP, "EVR_ Pulser_ Mapping")
field(OUT, "@OBJ=EVR1:Pul0,Func=Trig")
field(VAL, "0x40")
}
record(longout, "blk1") {
field(DTYP, "EVR_ Mapping")
field(OUT, "@OBJ=EVR1,Func=Blink")
field(VAL, "0x40")
}
```

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Data Buffer

- Buffer reception in two stage. High priority thread reads from hardware places in FIFO. Lower priority thread takes from FIFO and runs callback list.
- Waveform device support to receive. Does endian conversion for multibyte types.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Plan to use this to distribute fill pattern for NSLSII.

Event FIFO Buffer

- Arrival of an "interesting" event is recorded in a hardware FIFO buffer.
- ► I/O Intr scan and callback list.
- Iongin device support to process on event reception.
- Throttling to prevent too fast events from taking 100% of CPU. Limit buffered events to a given rate. Also, do not run callback list until all previous processing is complete.

うして ふゆう ふほう ふほう うらつ

Can be disabled

Timestamp Validation

- Must prevent invalid timestamps from propogating into generalTime.
- Several times a misconfiguration caused one second tick to be sent too often, or out of sync.

ション ふゆ アメリア メリア しょうめん

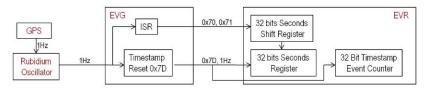
- Firmware bug (now fixed) caused occasional invalid reads.
- EVR must receive 5 sequential updates before it will start using time. Invalid if out of order time is received.

CML/GTX Pattern Outputs

- Higher resolution. 20x EVRRF, 40x EVRTG (effective 8x)
- Output multi-bit patterns

🕷 💽 EVR TST evr:nova CML FP4		- - ×
EVR: TST evr:nova CML: FP4		
Control Disabled Off Normal Mode Waveform	4x Pattern Mode Rieing Rise High High Falling Fall Low Low	Frequency Mode Trig M <u>Active high</u> Cnie high 10.000 ns Cnie low 10.000 ns
Waveform Mode Delay Cabulator Disabled Delay 16 ns Width	50 ns	Bunch Train Lenght
1 1 1 1 1 1 1 1 1 1 1 1 1 1	40	60 80

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


Generator Hardware

- Send periodic event and/or data
- Send event sequences
 - Preset list of times and codes (eg. linac shot or booster ramp)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Currently VME only, in future cPCI only.

Timestamp

- Synchronize to GPS without custom electronics.
- Off the shelf GPS receiver with NTP server and 1Hz TTL output.
- Buffered with Rubidium oscillator for high precision. Continues running if GPS 1Hz is lost.
- IHz send special event code and interrupts CPU
 - Special event code 0x7D marks start of a second (hardware only)
 - Interrupt sends next second bit by bit. POSIX time by default.

EVG Sequences

- Example. Timeline for injection/top off
 - Start insertion kicker ramp up
 - ► wait 100us
 - Trigger Klystron modulators
 - ► wait 20us
 - Trigger Klystron
 - ▶ wait 500ns
 - ► trigger *e*_gun
 - ► wait 10us
 - Start insertion kicker ramp down

Delay	Code		
0	0×10		
12500	0x20		
2500	0x25		
61	0x40		
1250	0x12		

Note: This is how it looks in hardware

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Sequence Use Cases

- NSLSII Booster is $\frac{1}{5}$ diameter or Storage ring.
- Filling/top off process involves multiple injections
- Need to control how many bunches and where they go
- Use timing system to select which sector to fill
 - "Fill Manager" process sets booster extraction delay
 - ▶ Move ≥ 1 events
- Allow programatic manipulation w/o complicating client(s)

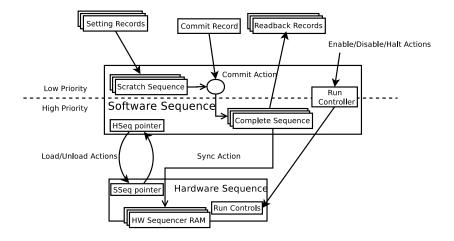
うして ふゆう ふほう ふほう うらつ

Probably aSub records in a seperate softIOC

Sequence Representation

- 2 waveforms (codes and times)
 - Clients have to know array index
 - Ordering
- Trigger source/mode
- Control (commit, (un)load, enable/disable)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()


Sequence Management

- Manage user interactions with sequence ram
- Current hardware supports two independent sequences.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Single shot or repeating
- Don't modify while running

Model

Sequencer Workflow

- 1. Modify scratch sequence
 - DB/CA operations of individual records (synchronous device supports)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- CA put w/ callback
- 2. Commit
 - Single DB/CA operation
 - Updates complete sequence
- 3. Sync
 - When loaded, or at end of run if already loaded
 - Automatic

Interface

K 🙋 /home/m	dav 💶 🛛 🗙
evg:nova SoftSeq:0	
Event Code /	'Timestamp
Run Mode	Timestamp Input
Normal	EGU 💷
Normal 💷	mSec 💷
Trigger Source Mxc0 Mxc0	Committed Commit
Loaded	Software Trigger
Load Unload	Trigger
Enal	bled
Enable Disable	Pause Abort
	_

	Event Code	Timestamp	
1	10	0	
2	11	10	
3	12	500	
4	11	510	
5			
6			
7			

◆□> <圖> < E> < E> E のQ@

Sequence Control

🕺 🔟 /home/me	dav 🗕 🗆 🗙				
evg:nova SoftSeq:0					
Event Code / Timestamp					
Run Mode	Timestamp Input				
Normal	EGU 🗆				
Normal 💷	mSec 💷				
Trigger Source					
Mxc0	Committed				
Mxc0	Commit				
Loaded	Software Trigger				
Load Unload	Trigger				
Enabled					
Enable Disable	Pause Abort				

- Run Mode
 - Single
 - Disarm after one run
 - Normal
 - rearm after each run
 - Automatic
 - continuous run
- Trigger Source
 - For Single and Normal
- Units
 - Meaning of time delay
- Commit
 - Propogate changes to hardware

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Sequence Control (2)

K 💿 /home/m	dav 💶 🗙				
evg:nova SoftSeq:0					
Event Code	'Timestamp				
Run Mode	Timestamp Input				
Normal	EGU 🗆				
Normal 💷	mSec 💷				
Trigger Source	Committeel				
	Committed Commit				
Loaded	Software Trigger				
Load Unload	Trigger				
Enal	bled				
Enable Disable	Pause Abort				

- ► Load/Unload
 - (De)Allocate hardware resources to run this sequence
- Enabled
 - Trigger permit
- Disable
 - Prevent further triggers.
 If already triggered, run to completion
- Pause
 - Stop running sequence w/o reset.
- Abort
 - ► Immediately halt

Interface

Specify sequence. Units of Timestamp defined for each sequence.

Note: Pictured is a small PyQt+cothreads script to allow editing sequence waveforms in a table.

🕷 😐 EvgSoftSeq <2> 🗕 🗆 × evg:nova SoftSeq:0 Event Code Timestamp 1 10 0 11 2 10 3 12 500 4 11 510 5 6 7 Set

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Super Sequencer Demo

- Several Linac FEL machines want to reconfigure between shots.
- Also have repetition rates ~100Hz (10ms period)
- Demo attempts to show how soft sequence interface could be used
- Cycle through 10 predefined sequencer configurations at 100Hz

Seq #0	Seq #1	Seq #2	Seq #3	Seq #4	Seq #5	Seq #6	Seq #7	Seq #8	Seq #9
10	11	12	13	14	10	11	12	13	14
15	15 1	15		15		15		15	
	16					16			

ション ふゆ アメリア メリア しょうめん

Demo Interface

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Database Processing

```
record(longout, "$(P)Evnt-SP") {
  field (DTYP, "EVR Event")
  field (OUT , "@OBJ=EVR1, Code=17")
  field (SCAN, "I/OuIntr")
                                              record (seq, "$(P) Load - Fout ")
  field (FLNK, "$(P)Cnt-I")
                                                field (SELM, "Specified")
                                               field (DOL1, "1")
record(calcout, "$(P)Cnt-I") {
                                               field (LNK1, "$(SEQ1)Load-Cmd_PP
  field (CALC, "A<10?A+1:1")
  field (INPA, "$(P)Cnt-I_NPP")
                                              record (seq, "$(P) Unload – Fout ")
  field (OUT, "$(P)Load-Fout .SELN_PP")
  field (FLNK, "$(P)Load-Sel")
                                                field (SELM, "Specified")
}
                                               field (DOL1, "1")
                                                field (LNK1, "$(ŚEQ1) Unload — Cmd⊔F
record(calcout, "$(P)Load-Sel ")
  field (INPA, "$(P)Cnt-IUNPP")
  field (CALC, "A<=1?10:A-1")
  field (OUT , "$(P) Unload-Fout .SELN_PP")
}
```

▲ロ▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で