

Opportunities and Challenges for DLSR enabled Scanning Probe Microscopy

Stefan Vogt

Group Leader Microscopy X-ray Science Division Advanced Photon Source

Adj. Assoc. Professor Feinberg School of Medicine Northwestern University

Acknowledgements

- Barry Lai, Benjamin Stripe, Chris Roehrig, Dan Legnini, David Vine, Evan Maxey, Lydia Finney, Joerg Maser, Qiaoling Jin, Marvin Cummings, Nozomi Shirato, Peter Fuesz, Ross Harder, Si Chen, Sophie Charlotte Gleber, Volker Rose, Zhonghou Cai, and the rest of the Microscopy group
- Wenjun Liu, Michael Wojcik, XSD, Argonne
- Martin Holt, CNM/NST
- Conal Murray, IBM
- Rachel Mak, Junjing Deng, Young Hong, Kenan Li, Yue Sun, Chris Jacobsen, Argonne / Northwestern University
- Marianna Bertoni, Arizona State University
- Eugene Lavely et al, BAE Systems
- Keith Brister, LS-CAT / Northwestern University
- Rafael Jaramillo, Tonio Buonassisi, MIT
- Peter Eng, Matt Newville, Tonio Lanzirotti, Mark Rivers, Steve Sutton, University of Chicago
- Siwei Wang, Stefan Wild, Sven Leyffer, MCAS, Argonne

Financial support:

- Department of Energy (Basic Energy Science)
- National Institutes of Health (NIBIB, NIGMS)

DLSR enables Next Generation Scanning Probe Microscopy

- Insight into "Messy" Dynamics of Real-World Materials
- Highest spatial resolution
 - Image processes at boundaries
- Highest sensitivity
 - Orders of magnitude improved sensitivity for defects, impurities, ..
- Combined with realistic sample size
- And tomography
 - With all relevant contrast modes (phase, chemical sensitivity, XRD, ...)
- And spectroscopy
- And additional relevant techniques
 Real devices and processes in real

environments in real time (operando)

Top image courtesy R. P. Winarski (ANL/CNM)

L. Trahey, D. J. Vine, et al

Fast, multiscale visualization with nano-beams: Uniquely enabled by DLSR and required for characterization of real systems in 3D

Photovoltaics:

Understand and Manipulate Defects in Inorganic Solar Cells

Opportunity: Society: Gain in efficiency, reduction in cost Science: Physics of defects

M. I. Bertoni, D. P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, T. Buonassisi, *Energy Environ. Sci., 2011, 4, 4252-4257*.

S. Hudelson, D. Newman, S. Bernardis, D. P. Fenning, M. I. Bertoni, M. A. Marcus, S. C. Fakra, B. Lai, T. Buonassisi* *Adv. Materials 2012, 22, 3948.*

But, need to survey 'realistic' sample

But a lot of detail: example Fe signal

APS MBA upgrade for a nano-focusing beamline:

- Full APS flux into a ~250 nm spot
 - 'any' technique can now add microscopic resolution

Sacrifice some focused flux for further improvements in spatial resolution

- 50 nm for long working distance (10s of mm), e.g., using K-B mirrors
 - Enables in situ, complex sample environments
- 20 10 nm for high spatial resolution, but short working distance (eg, mm), e.g. using zone plate optics
- 5 nm and below, for highest spatial resolution, using, eg, MLLs
- Can combine all of the above with CDI/ Ptychography for further improved structural resolution, and deconvolution
- Expect nearly direct translation of increased brightness into focused flux.

Dependent on optics and detectors, but linked to speed: sensitivity

Today at APS:

- (100 mA, 3.0 nm,UA, L=2.4 m)
- XRF detector collects 6% of 4πSR

	Spot size			
sample thickness [um]	200 [nm]	20 [nm]	5 [nm] (0.1s)	
0.1 [um]	3500	35	15	
10 [um]	26000	260	60	

Future ?

- 100x more coherent flux
- plus assume XRF detector collects 30% of 4πSR

	Spot size			
sample thickness [um]	200 [nm]	20 [nm] (15ms)	5 [nm] (0.5ms)	
0.1 [um]	180	6	4	
10 [um]	1800	50	25	

10 keV incident beam energy, biological sample in water (frozen hydrated) minimum detectable Zn [#atoms], limited by rad damage:

For materials sciences samples, radiation damage less of an issue

High resolution optics, and large area, minimum background detector modules required for highest sensitivity, need brightest source to make meaningful use

Enabler speed: spatial resolution in a large field of view

- Need high spatial resolution to resolve structures, achieve sensitivity: optics, detectors
- Need high flux to acquire data in reasonable time frame: **source**

APS Today	APS-U:					
Scan area	Resolutio n	Dwell time	Scan time	Dwell time	Scan time	
10x10mm	100nm	5ms	1.5 years	25 us	3 days	
100x100 um	20nm	0.1s	29 days	0.5ms	3.5h	
10x10 um	5nm	0.1s	5 days	0.5ms	0.5h	
			Aluminum Over	lay	2 um MAPS V1.7.3	
	Part of a M	Microchip, scan 180x1	180 microns, 100nm ste	eps, 6ms dwell		

Integrated Circuits view by microprobe (E. Lavely et al), BAE

Speed enables dynamic microscopy

• Observing response of real systems to real environments

- Beyond the pump-probe: continuous evolution at the nanoscale
- Process induced structural evolution and trace metal spectroscopy of wide-bandgap semiconductors under growth conditions
- Nanoscale statics and dynamics of phase transitions in correlated electron materials

Nanoscale pinning and de-pinning of M1-M2 structural phase transition in a stressed nanobeam of VO2

Growth of compositionally graded wide bandgap nanowires exhibiting virtual p/n junction behavior without impurity doping

H. Guo et al. Nano. Lett., 11, 3207-3213 (2011)

Challenges

- Nano focusing Optics
 - Diffractive, reflective, refractive
 - Life time in beam
- Nanopositioning (in particular for *in situ*)
- Detectors
 - Speed
 - Resolution (spatial, energy)
 - Background
- Radiation damage (see tomorrow)
- 'Big data'

Zone plate development:

Zone plate with 100-nm-outermost zone width, 300-µm-diameter, 800-nm-thick Au zones; fabricated for stacking experiments (with matching twin zone plates).

Soft X-ray zoneplates lead the way re: spatial resolution Increase aspect ration to achieve reasonable efficiency Current plans: develop zone plate technology to go down to 10 - 20 nm spatial resolution, at high aspect ratios (=efficiencies), using multiple stacking / doubling approaches

Simulation: two stacked zone plates with dr_N =20 nm, optimized for different stacking distances

J. Vila Comamala et al., J. Synch. Radiat. 20, 3 (2013).

MLLs to go to 5 nm and below

Parameters:

- drN = 5 nm structure:
- Deposited: 13.3 um of 30 μ m
- \rightarrow diffraction limit: 12.5 nm

Challenge: Nanopositioning

- Use of overfilled secondary source to 'stabilize' focused spot much less desirable
- For highest resolution, need to keep optics aligned with regards to specimen much better than 5 nm ...
 - More challenging with *in* situ
- Greater speed enabled by DLSR actually helps

Figure 4. Left: A 3-D model of the mirror mount module for 40- to 80-mm long mirrors. Right: Photograph of the mirror mount module Y9-6201.

1471 Hz1563 Hz2624 HzFigure 5. Simulated 3-D models of the first three resonant frequencies using the finite element analysis method^[10,11].

Detectors:

- Higher-speed, low-background, larger-dynamic range (2D) detectors required.
 - Combine ptychography with fast scanning for XRF
- XRF detectors need to be capable of processing GHz instead of MHz of signals

- Developments are under way, eg., MAIA (XRF detection) can go to 10s of useconds, new electronics that can actually analyse pileup (OCR of 1Mcps using a conventional SDD)
- Additional future developments likely, eg, improved, modular, packing of multi element detector systems, etc. -> sensitivity
- Improve peak-to-background / Energy resolution for further improved sensitivity (detect single atoms)

Truly Exciting Opportunity: full chemical information in one shot

Challenge:

Determining chemical states at 30 to 100 nm scale is difficult. Energy scanning for XANES is time-consuming, requires high spatial stability as the energy moves, and puts a large radiation dose on the sample.

For spatial resolution below 20 nm on dilute sample, conventional XANES may be impossible (radiation damage).

Opportunity:

High energy resolution XRF (~1 eV at 6 keV) allows chemical/spin state determination without scanning incident energy.

Could get full chemical state information for ~all elements in illuminated spot simultaneously

Currently, need crystal analyzers with low efficiency, -> measurements photon flux limited and slow, can only measure one element at a time.

Recent developments at APS and NIST with superconducting XRF detectors promise ~1 eV resolution at 10^5 Hz. Coupled with a high flux nano-probe beam, this will allow chemical state determination for **multiple elements** simultaneously, without moving anything, and much less susceptible for radiation damage.

This will allow currently impossible nano-scale mapping of chemical states, and revolutionize scientific areas in biology, energy sciences,

materials chemistry, and geo-sciences.

ANL test device: Miceli, Cecil et al.

Most interesting (complex ?) challenge: the software side

- Already today, data volumes are becoming challenging
- DLSR bring another factor 100x
- Datasets themselves become more challenging: combination of numerous contrast mechanisms (XRF, ptychography) within the same instrument, as well as in fusion with others (TXM, EM, visible light microscope,..).
- => Interpretation without significant reduction from software becomes impossible (handling of volume not sufficient)
- In situ / operando in combination with tomography and spectroscopy
 1^{* image}
 - Sample drifts harder to measure
 - the sample is changing while being measured
 - Software to reduce complex
 data sets to few relevant

numbers

Example dataset: 3 different cell types(yeast, algae, red blood cells) on background, noisy data

Yeast: P+Zn, red blood cells: Fe, Algae: Fe+Mn Dataset: 0.3x0.3um step size, 200x200um fov, 10 ms dwell time

Example dataset: 3 different cell types(yeast, algae, red blood cells) on background, noisy data

Algorithm is able to detect presence of cells and correctly classify cells into different categories.

Yeast: P+Zn, red blood cells: Fe, Algae: Fe+Mn Dataset: 0.3x0.3um step size, 200x200um fov, 10 ms dwell time

Challenge and opportunity: Big Data

Siwei Wang et al, submitted

DLSR revolutionizes scanning probe microscopy

- Hierarchical visualization: From nanometers to full samples
- Directly improves spatial resolution in x-ray microscopy
- Enables XRF/XRD tomography at full fidelity, ie, with a 3D resolution matching the lateral spatial resolution of the instrument
- Permits high spatial resolution at the same time as a large field of view (we can actually find the proverbial needle in the haystack)
- Opens up the realm of studying dynamic processes for weakly interacting samples or samples requiring trace sensitivity
- Enables *in-situ* in real time (combinations with tomography, spectroscopy, etc)
- Could lead to full chemical analysis down to 5 nm, in real time.
 With KB mirrors, can achieve *in situ*, in real time down to 50 nm.
- Challenges:
 - Nano focusing Optics, Nanopositioning (in particular for *in situ*)
 - Detectors, Radiation damage (see tomorrow)
 - 'Big data'

Thank you for your a attention!