DLSR Workshop, Stanford, 2013

ALS-II: Injection + Pulsed magnets

Chris Pappas, Stefano de Santis, Christoph Steier, Hamed Tarawneh, Will Waldron, Changchun Sun, Slawek Kwiatkowski

- New high performance storage ring based on multi bend achromat (9 bends per arc) in same building and tunnel
 - Same circumference, straight section length, location and symmetry
- Injector upgrades:
 - Full energy accumulator ring in shared storage ring or booster tunnel
- Optics, Undulator, conventional facilities, detector upgrades, ...
 - Scope + timing to be decided

ALS and ALS-2 in numbers

Parameter	Units	Current ALS	ALS-2
Electron Energy	GeV	1.9	1.9-2.2 (2.0 baseline)
Horiz. Emittance	pm rad	2000	~50
Vert. Emittance	pm rad	30	~50
Beamsize @ ID center (ơ _x /ơ _y)	μ m	251/9	<15 / <15
Beamsize @ Bend (σ_x/σ_y)	μ m	40 / 7	<5 / <7
Energy Spread	$\Delta E/E$	9.7×10 ⁻⁴	<8.5×10 ⁻⁴
Typical Bunch Length (FWHM)	ps	60-70 (harmonic cavity)	150-200 (s/c harmonic cavity)
Circumference	m	196.8	~196.2
Bend Magnet Angle	degree	10	3.33

Advanced Light Source

C. Steier, ALS-2 Injection, 2013-12-10

ALS-II Injection - Accumulator Ring (AC)

- Accumulator Ring for On-axis injection into SR to allow injection into small dynamic aperture
 - Full energy accumulator ring in shared storage ring or booster tunnel.
- Requirements for AC ring:
 - Cost effective, lifetime of ≥ 2 hours and DA of ±10 mm to allow Offaxis injection from ALS booster

Swap-out injection was first proposed by M. Borland for possible APS upgrades.

Parameters of SR-size AC ring		
Energy	2 GeV	
Nat. Emittance	500 pm.rad	
Circumference	184.8 m	
Tunes v _x /v _y	28.18 / 8.23	
Nat. Chromaticity [x/y]	-58 / -28	
τ _x /τ _y /τ _/ [msec]	7.1/9.9/6.3	
Energy Loss	246 KeV	
Max Bend Flux	1.164 T	
Max. Bend Grad.	-17.2 T/m	
Max. Quad. Grad.	56 T/m	

BERKELEY LAD

alla:Ie

Office of Science

Advanced Light Source

ALS

C. Steier, ALS-2 Injection, 2013-12-10

Baseline Concept Considerations

- Bunch train / Fill structure for ALS-2 very critical with respect to achievable bunch lengthening factor
- Harmonic RF IBS Instability considerations strongly tied to pulsed magnets
- Lower Lifetime (>= 1 h) and (preferred) 2 ns bunch spacing pushes towards swap-out of multiple bunches with recycling of extracted beam
 - Draft is splitting storage ring beam into 10 trains with about 30 bunches, each. Train spacing <= 10 ns

ALS-II Injection Scheme

- Partial Swap-out is foreseen for ALS-II injection:
 - Relaxed requirements on AC ring (vacuum, RF, instabilities) and pulsed magnets, I≤100 mA.
 - Fill pattern for ALS-II of bunch trains is foreseen, i.e. 10 trains with about 30 bunches and train spacing of ≤ 10ns.
 - Recycling the extracted beam.

ana:re

Office of Science

6

ALS-II Fill Pattern

Advanced Light Source

C. Steier, ALS-2 Injection, 2013-12-10

ALS Pulsed Magnets draft concept

- We are very early in the actual technical development (seriously started on work for this applications at beginning of October)
 - Stripline kicker, 2 mrad, +/- 6 kV pulse voltage, 5-10 ns rise+fall time, 50 ns flat top
 - Using 10 mm stripline aperture, total stripline length 2x1 m
- Pulser concept based on inductive adder with off the shelf switching elements
 - Parameters (except for pulse length) very close to ATF demonstrated parameters

Stripline Kicker

Advanced Light Source

C. Steier, ALS-2 Injection, 2013-12-10

.....

8

ALS)

Inductive Adder

Modulator		
MOSFET Voltage	700	V
MOSFET Current	120	Α
# of Cells	9	
# MOSFETs/Cell	6	
Total MOSFETs/Magnet	54	
Core Volt-Seconds	4.20E-05	Vs
Bmax CMD5005	0.32	Т
Core Area	1.31E-04	m²
Core Width/Height	1.15E-02	m

Example of past implementation: E. Cook, LLNL

Advanced Light Source

C. Steier, ALS-2 Injection, 2013-12-10

Injection tolerances for ALS-II

- Injection from ALS booster-size accumulator ring with $\varepsilon_x=2$ nm.rad, $\varepsilon_v=20$ pm.rad.
- Tracking with beam offset of 1 mm, physical aperture of ±5mm and lattice errors in all BMs & QMs of $\Delta g/g=1 \times 10^{-3}$ (normal) and $\Delta g/g=1 \times 10^{-4}$ (Skew).
 - 1 mm offset corresponds to easy requirements for injection kicker pulse to pulse reproducibility and pulse flatness of >10%

ALS

Summary

- On-axis, swap-out injection enables ultimate lattice performance
 - Kicker magnets are demanding
 - Transfer efficiency insensitive to (large) kicker errors
- Early in R+D effort
 - Draft design for Pulser and Stripline exists
 - Plan is to build prototype pulser within this fiscal year
 - Parameters appear feasible

Backup Slides

C. Steier, ALS-2 Injection, 2013-12-10

12

mm

BERKELEY LA

Effect of Swap-out Injection

Brightness dip due to injection of one bunch train (ϵ =500 • pm.rad) is transparent for most users. Gating will be used for sensitive experiments.

Brightness evolution: inject 0.1*I_{beam}

Advanced Light Source

C. Steier, ALS-2 Injection, 2013-12-10

LBNL Experience

- Stripline kickers for feedback systems (ALS, PEP-2, ...)
- Stripline kicker for ALS pseudo single bunch
- Involvement in stripline kickers for SPS, ATF,...
- Pulsers for ALS pseudo single bunch kicker
- Pre-conceptual design of NGLS spreader (in the earlier pulsed magnet version)
- Many other pulsed power applications (accelerator driven fusion, ...)

