DLSR Workshop, Stanford, 2013

ALS-In-Injection + Pulsed magnets

Chris Pappas, Stetano de Santis, Christoph Steier, Hamed Tarawneh, Will Waldron, Changchun Sun, Slawek Kwiatkowski

From ALS to ALS-II

- New high performance storage ring based on multi bend achromat (9 bends per arc) in same building and tunnel
- Same circumference, straight section length, location and symmetry
- Injector upgrades:
- Full energy accumulator ring in shared storage ring or booster tunnel
- Optics, Undulator, conventional facilities, detector upgrades, ...
- Scope + timing to be decided

ALS and ALS-2 in numbers

Parameter	Units	Current ALS	ALS-2
Electron Energy	GeV	1.9	$1.9-2.2$ (2.0 baseline)
Horiz. Emittance	pm rad	2000	~ 50
Vert. Emittance	pm rad	30	~ 50
Beamsize @ ID center $\left(\sigma_{\mathrm{x}} / \sigma_{\mathrm{y}}\right)$	$\mu \mathrm{m}$	$251 / 9$	$<15 /<15$
Beamsize @ Bend $\left(\sigma_{\mathrm{x}} / \sigma_{\mathrm{y}}\right)$	$\mu \mathrm{m}$	$40 / 7$	$<5 /<7$
Energy Spread	$\Delta \mathrm{E} / \mathrm{E}$	9.7×10^{-4}	$<8.5 \times 10^{-4}$
Typical Bunch Length (FWHM)	ps	$60-70$	$150-200$ (harmonic cavity) $(\mathrm{s} / \mathrm{c}$ harmonic cavity)
Circumference	m	196.8	~ 196.2
Bend Magnet Angle	degree	10	3.33

ALS-II Injection - Accumulator Ring (AC)

- Accumulator Ring for On-axis injection into SR to allow injection into small dynamic aperture
- Full energy accumulator ring in shared storage ring or booster tunnel.
- Requirements for AC ring:
- Cost effective, lifetime of ≥ 2 hours and DA of $\pm 10 \mathrm{~mm}$ to allow Offaxis injection from ALS booster

Swap-out injection was first proposed by M. Borland for possible APS upgrades.

Parameters of SR-size AC ring	
Energy	2 GeV
Nat. Emittance	$500 \mathrm{pm} . \mathrm{rad}$
Circumference	184.8 m
Tunes $\mathrm{v}_{\mathrm{x}} / \mathrm{v}_{\mathrm{y}}$	$28.18 / 8.23$
Nat. Chromaticity $[\mathrm{x} / \mathrm{y}]$	$-58 /-28$
$\mathrm{~T}_{\mathrm{x}} / \mathrm{T}_{\mathrm{y}} / \mathrm{T}_{\mathrm{l}}$ [msec]	$7.1 / 9.9 / 6.3$
Energy Loss	246 KeV
Max Bend Flux	1.164 T
Max. Bend Grad.	$-17.2 \mathrm{~T} / \mathrm{m}$
Max. Quad. Grad.	$56 \mathrm{~T} / \mathrm{m}$

Baseline Concept Considerations

- Bunch train / Fill structure for ALS-2 very critical with respect to achievable bunch lengthening factor
- Harmonic RF - IBS - Instability considerations strongly tied to pulsed magnets
- Lower Lifetime (>= 1 h) and (preferred) 2 ns bunch spacing pushes towards swap-out of multiple bunches with recycling of extracted beam
- Draft is splitting storage ring beam into 10 trains with about 30 bunches, each. Train spacing $<=10 \mathrm{~ns}$

ALS-II Injection Scheme

- Partial Swap-out is foreseen for ALS-II injection:
- Relaxed requirements on $A C$ ring (vacuum, RF, instabilities) and pulsed magnets, $1 \leq 100 \mathrm{~mA}$.
- Fill pattern for ALS-II of bunch trains is foreseen, i.e. 10 trains with about 30 bunches and train spacing of $\leq 10 \mathrm{~ns}$.
- Recycling the extracted beam.

ALS-II Fill Pattern

Pulsed Magnets draft concept

- We are very early in the actual technical development (seriously started on work for this applications at beginning of October)
- Stripline kicker, 2 mrad, +/- 6 kV pulse voltage, 5-10 ns rise+fall time, 50 ns flat top
- Using 10 mm stripline aperture, total stripline length 2x1 m
- Pulser concept based on inductive adder with off the shelf switching elements
- Parameters (except for pulse length) very close to ATF demonstrated parameters
\square

Stripline Kicker

Magnets layout for swap-out injection at straight

Dx = $4.4 \mathrm{~mm}=$ Ang * L / 2 ---> Ang = $4.4 \mathrm{mrad}, \mathrm{L}=2 \mathrm{~m}$
Ang $=2.2 \mathrm{mrad}, \mathrm{L}=4 \mathrm{~m}$
Ang $=5.8 \mathrm{mrad}, \mathrm{L}=1.5 \mathrm{~m}$

Inductive Adder

Modulator		
MOSFET Voltage	700	V
MOSFET Current	120	A
\# of Cells	9	
\# MOSFETs/Cell	6	
Total MOSFETs/Magnet	54	Vs
Core Volt-Seconds	$4.20 \mathrm{E}-05$	T
Bmax CMD5005	0.32	$\mathrm{~m}^{2}$
Core Area	$1.31 \mathrm{E}-04$	m
Core Width/Height	$1.15 \mathrm{E}-02$	

Example of past implementation: E. Cook, LLNL

Injection tolerances for ALS-II

- Injection from ALS booster-size accumulator ring with $\varepsilon_{\mathrm{x}}=2 \mathrm{~nm}$. rad, $\varepsilon_{y}=20 \mathrm{pm}$. rad.
- Tracking with beam offset of 1 mm , physical aperture of $\pm 5 \mathrm{~mm}$ and lattice errors in all BMs \& QMs of $\Delta \mathrm{g} / \mathrm{g}=1 \times 10^{-3}$ (normal) and $\Delta \mathrm{g} / \mathrm{g}=1 \times 10^{-4}$ (Skew).
- 1 mm offset corresponds to easy requirements for injection kicker pulse to pulse reproducibility and pulse flatness of $>10 \%$

Summary

- On-axis, swap-out injection enables ultimate lattice performance
- Kicker magnets are demanding
- Transfer efficiency insensitive to (large) kicker errors
- Early in R+D effort
- Draft design for Pulser and Stripline exists
- Plan is to build prototype pulser within this fiscal year
- Parameters appear feasible

Backup Slides

Effect of Swap-out Injection

- Brightness dip due to injection of one bunch train ($\varepsilon=500$ pm.rad) is transparent for most users. Gating will be used for sensitive experiments.

Brightness evolution: inject $0.1^{*} I_{\text {beam }}$

LBNL Experience

- Stripline kickers for feedback systems (ALS, PEP-2, ...)
- Stripline kicker for ALS pseudo single bunch
- Involvement in stripline kickers for SPS, ATF,...
- Pulsers for ALS pseudo single bunch kicker
- Pre-conceptual design of NGLS spreader (in the earlier pulsed magnet version)
- Many other pulsed power applications (accelerator driven fusion, ...)

