DLSR Workshop, Stanford 2013

ALS-II Plans

2013-12-09

Christoph Steier, Hamed Tarawneh, David Robin for the ALS-II proposal team

Outline

- Diffraction Limited Storage Rings
 - International Context
- ALS-II Proposal
 - Goals
 - Hardware Layout
 - Performance Projections
 - Examples of Accelerator Physics Challenges
- Proposal Development
- Summary

Advanced Light Source

AS Recent Advances Enable Ultra-Bright Rings

- Storage ring light sources have not reached their practical limits of brightness and coherence.
- <u>Dramatic</u> improvements are on the horizon due to transformational advances in accelerator design.
- What's Changed:
 - Tightly-packed multi-bend achromat lattices via new magnet and vacuum technology.
 - Success of top-up, better understanding of storage ring scaling, advances in simulation, optimization, and alignment.
- High confidence that diffraction-limited rings are feasible.
- International community is now upgrading existing facilities and building new facilities with diffraction limited capability that will enable new science.

x [µm]

Office of Science

International Context : Activity towards brighter storage rings

Under construction

BNL: **NSLS-II** (2014): 3 GeV, 1100 pm (500pm) x 8 pm, 300(500) mA (**New**)

Sweden: **MAX-4** (2016): 3 GeV, 230 pm x 8 pm, 500 mA (**New**)

Brazil**: SIRIUS** (2016/17): 3 GeV, 280 pm x 8 pm, 500 mA (**New**)

Advanced design stage

Japan: **SPRING-8-II (**2019): 6 GeV, 67 pm (**Upgrade**)

France: **ESRF-II** (2019): 6 GeV, 160 pm x 3 pm, 200 mA (**Upgrade**)

APS-II and ALS-II proposal

APS-II: 6 GeV, 60 pm x 2 pm, 200 mA (**Upgrade**)

ALS-II: 2 GeV, 52pm x 52pm, 500 mA (Upgrade proposal)

In addition China (BAPS), Switzerland (SLS) and others are developing plans for DLSR

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

Pioneering accelerator upgrades allow for a brighter, more capable ALS

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

ALS-II Goals (tentative)

- 1. Reduce the horizontal emittance from 2000 pm to about 50 pm and optimize the beta functions
- 2. Maintain the existing ID straight sections in their current state
- 3. Maintain the existing bending magnet beamlines
- 4. Preserve the almost constant multibunch current at 500 mA
- 5. Further improve excellent Beam Stability (Electron+Photon)
- 6. Preserve single bunch capability
- 7. Upgrade injection system for on-axis swap-out injection
- 8. Reuse existing hardware when effective for cost+performance
- 9. Operate with costs comparable to present ALS
- 10. Limit the downtime for installation and commissioning to about one year.

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

BERKELEY LAB

Science at a (soft x-ray) Diffraction Limited SR

Diffraction Limit upgrade on a 200m circumference ring enables nanoscale microscopes with chemical, magnetic, and electronic resolution

Upgrade of ALS to diffraction limit

Chemical Maps

From 20 nm to 2 nm; from 2D to 3D Resolve nano-interfaces in a cathode Observe the flux in a catalytic network

Electronic Maps

nanoARPES of complex phases at 25 nm resolution

Magnetic Maps

Thermally-driven domain fluctuations imprinted in speckle at nm resolution

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

Multi-bend achromats pave way to the diffraction limit

Lattice design of ALS evolved from a triple-bend achromats (TBA) to a multi-bend (9BA) achromat for ALS-II. Result is a large reduction in emittance, $\varepsilon_x = \sigma_x \sigma'_x$

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013 8

Office of Science

Advanced Light Source

Nonlinear Dynamics

DLALS lattice frequency map, $\eta_x = 0$ cm, $\nu_x = 41.1265$

- Using genetic algorithms for lattice optimization
- Nonlinear dynamics with initial optimization looks very promising
- Dynamic aperture appears sufficient $(>100 \sigma_{x,y})$ for on-axis injection of small emittance beam and sufficient Touschek lifetime.

ENERGY

Office of Science

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

- New high performance storage ring based on multi bend achromat (9 bends per arc) in same building and tunnel
 - Same circumference, straight section length, location and symmetry
- Injector upgrades:
 - Full energy accumulator ring in shared storage ring or booster tunnel
- Optics, Undulator, conventional facilities, detector upgrades, ...
 - Scope + timing to be decided

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

Swapping beam accumulator and storage ring bunch trains

- storage ring bunches transferred to accumulator
- accumulator bunches transferred to storage ring

Swap-out injection was first proposed by M. Borland for possible APS upgrades

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

- Magnet spacing moderate (>10 cm), 12 mm pole radius
- All magnet strengths feasible with conventional magnets

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

Advantage of smaller apertures

- Smaller apertures in DLSR arcs enable strong gradients to minimize emittance
- However, DLSRs also allow smaller apertures in straights
 - Smaller gaps allow higher performance (shorter period, i.e. more flux) undulators
 - Round beam allows to go from flat undulator geometries (which were fine for linear polarization) to round ones
 - Potentially large advantage for polarization control undulators (could be both permanent magnet or s/c)
 - Will evaluate substantially cheaper undulators

A. Temnikh – Delta Undulator

2

Brightness increase: From ALS to ALS-II

- Recent ALS upgrades led to top-off, high-current operation, and brighter beams
- Additional brightness
 improvement covers the x-ray spectrum with 100x
 improvement in SXR and even greater gain in HXR
- Reaching diffraction limit
 for soft x-rays in small
 ring, leveraging
 infrastructure
 - More cost effective and faster to implement than new ring

Advanced Light Source

ALS and ALS-2 in numbers

Parameter	Units	Current ALS	ALS-2
Electron Energy	GeV	1.9	1.9-2.2 (2.0 baseline)
Horiz. Emittance	pm rad	2000	~50
Vert. Emittance	pm rad	30	~50
Beamsize @ ID center (ơ _x /ơ _y)	μ m	251/9	<15 / <15
Beamsize @ Bend (σ_x/σ_y)	μ m	40 / 7	<5 / <7
Energy Spread	$\Delta E/E$	9.7×10 ⁻⁴	<8.5×10 ⁻⁴
Typical Bunch Length (FWHM)	ps	60-70 (harmonic cavity)	150-200 (s/c harmonic cavity)
Circumference	m	196.8	~196.2
Bend Magnet Angle	degree	10	3.33

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

16

.....

Coherent Flux

- ALS-2 could provide leading coherent flux in soft x-rays
- Highest coherent flux below 3 keV

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

.....

(Superbend-) Bend Brightness

Bend Magnet Brightness

- ALS bend brightness now higher than APS and NSLS-II bends/3PW
- ALS-2 would increase bend brightness by another factor of 5
- 3 T magnet on ALS-2 better than Superbends on ALS up to 40 keV

Advanced Light Source

ALS

Intra Beam Scattering

- Bunch Lengthening essential to keep IBS in check
 - Additional energy loss of IDs helps (not included above)
- Lengthening factors appear realistic with s/c third harmonic RF
- Requires small gap(s) in bunch train

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

- In general, low momentum compaction factor (which comes with small emittance) lowers single bunch instability thresholds
- Bunch lengthening (3HC) successfully mitigates effects

Advanced Light Source

ALS

Proposal Development

- Significantly ramped up effort both on physics and engineering side to fully develop ALS-2 proposal
- Finished top-down cost estimate, bottoms-up estimate being finalized
- LDRD funding for R+D in FY14 to retire risks
- Potential project could be executed
 - In under 6 years total, with under 1 year dark time
- There are many design optimizations being explored
 - Beam energy, radiation sources (undulators, bends, IR, ...), beamline arrangements, fill patterns, RF frequency, ...
- Close collaboration with prospective users to shape the proposal

R+D Areas currently pursued

- Pulsed Magnets/ Injection
- Vacuum System, small gap NEG coated chambers
- RF system, harmonic RF, transients, fill pattern
- Magnets, Radiation Production
 - Will have talks
 (Christoph, Andre,
 John, Hamed) in
 breakout sessions

Ti-Zr-V Cathodes are formed by a wire triplets. Dia. Wire ~ 1 mm.

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

22

20 (mm)

ALS-II will be optimal for soft x-ray science

Highest SXR flux

• A lower energy ring can have higher current, as well as more undulator periods for a given wavelength compared with higher energy rings

Highest SXR brightness

- Diffraction limited (i.e. high transverse coherence) to about 2 keV
- In SXR, will deliver higher brightness than higher energy rings
- Useful energy range extends from VUV to hard x-rays

Cost effective upgrade of a world leading facility

- Small diameter ring, with relatively low construction costs
- Easier beamline optics due to lower heat loading
- Utilizes and further enables an existing and extensive SXR infrastructure
- Maintains and expands existing strengths of ALS (excellent beam stability, high capacity, broad photon energy range, polarization control)

Advanced Light Source

Summary

- Dramatic performance improvements beyond ALS are possible (at moderate cost) and are now being actively studied.
- It is feasible to reach diffraction limit (i.e. transverse coherence) up to about 2 keV with ALS sized ring, i.e. ALS is ideal place for soft x-ray DLSR
- Proposal development work is ramping up and close coordination with potential users has started
- Long term goal to keep LBNL as leading center for soft xray science with ALS-2

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

Backup Slides

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

ALS Strengths of a Ring based Light Source

- Stability: High positional and photon energy stability. Turn-to-turn amplitude stability is at shot noise limit.
- **Tunability:** Easy and rapid photon energy tunability.
- Access: Serves ~ 50 instruments simultaneously at 100s of MHz xray pulse rep rate each.
- Quasi-CW Operation:
 - Long pulses at high repetition rates: close to unity duty cycle.
 - Minimally perturbative.
 - Space charge resolution limits in photoemission are minimized by long pulses.
 - Discrimination in photon counting detection eliminates fluorescent background.

Brightness / Coherent Fraction

 ε_r =diffraction limited emittance = $\sigma_\gamma \sigma'_\gamma = \frac{\lambda}{4\pi} = -\begin{bmatrix} 80 \text{ pm @ 1 keV} \\ 8 \text{ pm @ 10 keV} \end{bmatrix}$

Brightness is inversely proportional to convolution of electron ۲ beam sizes and divergences and diffraction emittance

Brightness =
$$\frac{\text{Spectral Flux}}{(2\pi)^2 \sigma_{Tx} \sigma_{Tx'} \sigma_{Ty} \sigma_{Ty'}} \quad \sigma_{Tx} = \sqrt{\sigma_x^2 + \sigma_\gamma^2}_{\text{Electron Photon}}$$

Coherent fraction = ratio of diffraction-limited emittance to total ۲ emittance

$$f_{coh} = \frac{F_{coh,T}(\lambda)}{F(\lambda)} = \frac{\sigma_{\gamma}\sigma'_{\gamma}}{\sigma_{Tx}\sigma_{Tx'}} \frac{\sigma_{\gamma}\sigma'_{\gamma}}{\sigma_{Ty}\sigma_{Ty'}}$$
DLSRs produce photon beams with dramatically larger coherent fraction due to reduced horizontal emittance

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

27

larger

Design choices/Challenges of ALS-II

- Design Choices:
 - Enabled by decade of progress in nonlinear dynamics, instabilities, magnet+vacuum technology:
 - Smaller magnet and vacuum apertures
 - Advanced Lattice
 - New Injection Method
- Challenges:
 - Physics: Stability, Lifetime, Injection integrated design optimization
 - Engineering: Magnets, vacuum systems, insertion devices
- All challenges appear manageable.
 - Refine design in connection with science case development

Advanced Light Source

C. Steier, ALS-II, DLSR Workshop, Dec 9, 2013

r₂=12mm: ALS-II

.....

