A light for Science

Overview of

Magnet design

issues

J. Chavanne, G. Le Bec , J F.Bouteille

On Behalf The ESRF ASD

European Synchrotron Radiation Facility

1. Magnets in DLSRs

2. Magnetic design

3. Magnetic measurements/alignment

Bending Magnets

No more standard dipoles in DLSRs

Quadrupole magnets

Quadrupole gradient primarily increased with reduction of aperture Mostly demanding for upgrade projects (has to cope with existing cell length)

Sextupole magnets

Sextupole gradient ~ same observation as for quadrupoles

. Emerge as lattice components in some projects

- MAX IV:
 - 65 000 T/m³
 - Bore radius 12.5 mm
- ESRF 2
 - 50 000 T/m³
 - Bore radius 20 mm
- OTHERS

- 1. Magnet apertures need (must) be dramatically reduced
 - Conventional magnet technology ("a la 3GLS")
 - Reasonable magnet size & wall plug power
- 2. Distinction between "Green Field" projects and upgrade projects
 - Upgrade projects have additional constraints
 - Use exiting ring
 - Same cell length , same source points for Insertion Devices
 - Compact magnet lattice smaller integrated drift space/cell (9 m -> 3m @ ESRF)

Field Quality

Definition of Good Field Region (GFR) is important for magnet design

- Small magnet aperture
- GFR size mostly defined by injection requirements (efficiency)
 - Emittance in booster
 - On axis/off axis injection
- Smaller beta function in MBAs is helping in this context ->smaller GFR
- Magnets may need to include pole shaping in some cases
- Vertical gap between poles/coils for photon beam extraction
- Systematic Beam tracking analysis definitely crucial
 - Error allowance
 - Sensitivity to different multipoles
 - Relevance of optimizations ...
 - etc

Beam stay clear derived from beta ^{1/2} scaling

Present lattice

New 7BA Lattice

S28 Lattice

Field quality specs to be refined

Zone 1	Horizontal [mm]	Vertical [mm]
Vacuum chamber aperture (radius)	15	10
Good field region (radius)	13	9

Zone 2 (high gradient)	Horizontal [mm]	Vertical [mm]
Vacuum chamber aperture (radius)	8.3	5.5
Good field region (radius)	7	5

Photon beam path to beamline

Vertical pole gap important impact on magnet design

- Field strength
- field quality
- More difficult for high order multipole magnets

Tools

- 3D magnetic simulation & magnetic tracking in magnet (Radia)
- Optimization toolbox

Design methods & studies

- Shape optimization (can be helpful)
- Energy efficiency
- Sensitivity analysis (small aperture)
- Interaction between magnets (compact lattice)

DL magnets

Coming on the scene for emittance reduction (ESRF2, APS 2)

• Significant L gradient: 0.5 T -> 0.15 T over ~ 2m

Permanent Magnet based DI magnet 0.53 T-0.18 T, constant gapl Iron weight 575 kg, Pm weight 30 kg ± 2% Filed tuning with small coil

Resistive DL magnets 0.53 T – 0.18 T constant gap 1.5 kW. 1600 kg Iron +coils

DQ magnets (1)

	Two families of DQs		w to moderate gradient	
	B at beam [T]	Gradient [T/m]	Aperture [mm]	
MAX IV	0.52	8.6	28	
Sirius	0.584	7.8	28	
Diamond DDBA	0.8	14.4	30	
ESRF2 DQ1	0.54	37	38	
ESRF2 DQ2	0.42	48	38	
APS 2	0.5	38	26	
ALS II	0.78	50	24	
High gradient				

DQ magnets (2)

A light for Science

Low gradient DQs: magnet derived from modified dipole

- Pole shaping
- In use in some 3GLS facilities (ex : ALBA, AS, CLS, SPEAR 3)

High gradient DQs: magnet derived from quadrupole

- Pole shaping may be necessary
- Different designs
- High field on beam= large offset -> difficult GFR

Or

Concept used for a septum quadrupole at Hera

Can be adapted for DQs Easier Vacuum chamber engineering

Quadrupole offset ESRF DQ 0.57 T-35 T/m 38mm aperture Half quadrupole ESRF DQ 0.57 T-35 T/m 20 mm bore radius

- Many Hard X-ray users on BM beamline in present high energy facilities
- General trend in MBAs is (obviously) to reduce the BM field
- DQs used as BM source points (ESRF, APS) with reduced field
 - easier engineering
 - Lower wall plug power
- Clearly conflicting with hard X-ray demand from BM beamlines
- ESRF has presently 0.85 T BM (+0.4 T short soft ends)

Mini Wiggler insertion

A light for Science

Mini-wiggler or 3 poles wiggler (3PW) or wavelength shifter Beamline not anymore linked to BM field More flexibility to BL, (Mini Insertion Device source)

Mini Wiggler insertion

High gradient quadrupole

ESRF Quadrupole prototype

- High gradient QF8B
- 100 T/m
- 500 mm long
- Massive iron (ARMCO type)
- 12.5 mm bore radius
- 1.85 kW
- Close to saturation @ 100 T/m

Engineering design of QF8B quadrupole prototype

Sextupoles

Sextupole Parameters

- Bore radius : 19 mm
- B"=3200 T/mm² nominal, 4900 max.
- Iron Length: 200mm
- Outer diameter: 430mm
- Total length (iron+coils): 262 mm
- Power: 430 W @ nominal field
- Min. Vertical gap between poles: 10 mm
- Laminated iron (Fast Orbit Correction)

Main sextupole coil

Corrector coil; Horizontal and vertical orbit correction, skew quadrupole correction

Additional version with dedicated modified yoke for photon beam stay clear (BM X-Ray source)

Improve field quality in GFR

Optimized poles for high gradient quadrupole

Hyperbolic profile

Modified profile

Gradient error plots (Dg/g)

Quadrupole magnet Gradient: 100 T/m Bore radius: 12.5 mm

Sensitivity to random mechanical errors

Mechanical tolerances.Transverse misalignment.(Quadrupole, 100 T/m, 12.5 mm
bore radius, at r_0 =7 mm.)(Quadrupole, 100 T/m, 12.5 mm
bore radius, at r_0 =7 mm.)

Mechanical tolerances. (Dipole, 0.5T, 25 mm gap.)

60

Different strategies:

1- "A la MAX IV"

- Common yoke for magnets on girder
- Massive iron yoke
- Rely on precise girder machining
- Magnet alignment = mechanical alignment
- Limited effort on magnetic measurements

MAX IV open girder

Expect outcomes very soon

2- Individual magnet approach

- Separated magnets
- Individual magnetic characterization
 - Multipoles analysis
 - Magnetic center
- Relative magnet alignment on girder done using stretched/vibrating wire
- Applicable to straight magnets only
- Positive experience from NSLS II & ESRF

ESRF stretched wire bench

Magnet alignment on girder

A Light for Science

G10 girder (cell30) equipped with the in situ measurement bench.

Alignment approaches (G. Le Bec)

In situ alignment

 All the magnets are aligned on a wire

 $\sigma \approx 20 \ \mu m$

 Transfer to the survey monuments

 $\sigma \approx 50 \ \mu m$

Classical alignment

- Magnets are measured in lab
- Survey monuments are adjusted

 $\sigma \approx 50 \ \mu m$

 The magnets are aligned using the survey monuments

 $\sigma > 50 \ \mu m$

• Similar results with precise spacers

Better alignment with the in situ method

- Alignment errors driven by the magnet position adjustment
- Will be mandatory for the future lattice high gradient magnets

Summary

1 Magnet Design

- Aggressive quadrupoles & sextupoles in DLSRs
 - Small magnet aperture
 - Field quality seems reachable
 - Quadrupoles~ close to saturation, still some margin on sextupoles
 - Vertical pole gap can be a limiting factor for field quality
 - Required mechanical tolerances may be difficult to reach (cost)

New types of Bending Magnets

- DLs
 - Feasible without doubt
- High gradient DQs
 - X-ray source points for BM beamlines
 - Trade off between high gradient & high field
- Prototyping will be essential
- No show stopper for the time being

Summary (2)

2 Magnetic measurements/alignments

- Recent R&D in magnetic measurements definitely helpful
 - Stretched wire
 - Vibrating wire
- Further work needed for curved magnets
- Alignment
 - Rely on machining tolerance (Max IV)
 - In situ alignment on girder using wire