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OUTLINE 

1.  Magnets in DLSRs 
 
 

2.  Magnetic design 

3.  Magnetic measurements/alignment 
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Red=DQ: Combined dipole quadrupole 
Blue=DL: Dipole with longitudinal gradient 
Black= Normal Dipole 

3GLS Cloud 

No more standard dipoles in DLSRs 

Bending Magnets 
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Quadrupole magnets 

3GLS Cloud 

From Green field 

Upgrade of existing facilities 

Quadrupole gradient primarily increased with reduction of aperture 
Mostly demanding for upgrade projects ( has to cope with existing cell length) 
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Sextupole magnets 

3GLS Cloud 

From Green field  

Sextupole gradient ~ same observation as for quadrupoles 
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Octupoles 

. Emerge as  lattice components in some projects 
 
 
•  MAX IV: 

•  65 000 T/m3 
•  Bore radius 12.5 mm 

•  ESRF 2 

•  50 000 T/m3 
•  Bore radius 20 mm 

•  OTHERS ….. 
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Few comments 

1.  Magnet apertures need (must) be dramatically reduced 
 
•  Conventional magnet technology (  “a la 3GLS”) 
•  Reasonable magnet size & wall plug power 

 

2.  Distinction between “ Green Field” projects and upgrade projects 

•   Upgrade projects have additional constraints 
 
•  Use exiting ring  
•  Same cell length , same source points for Insertion Devices 
•  Compact magnet lattice smaller integrated drift space/cell ( 9 m  

-> 3m @ ESRF) 
 

 
   

 



S28 Lattice @ ESRF 

Quadrupole 
49 to 55 Tm-1 

Dipoles with  
longitudinal gradient 

0.18 -> 0.53 T 

Sextupoles 
1600 to 3200 Tm-2 

Octupoles~ 50 000 T/m3 

High gradient quadrupoles 
100 Tm-1 

Combined dipole quadrupoles 
0.54 T / 34 Tm-1 

and 0.44 T / 37 Tm-1 
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Field Quality 
Definition of Good Field Region (GFR) is important for magnet design 
 

•  Small magnet aperture 

•  GFR size mostly  defined by injection  requirements (efficiency) 

•  Emittance in booster 
•  On axis/off axis injection 

•  Smaller  beta function in MBAs  is helping in this context ->smaller GFR 

•  Magnets may need to include pole shaping in some cases 
 
•  Vertical gap between poles/coils for photon beam extraction 

•  Systematic Beam tracking analysis definitely crucial 

•  Error allowance 
•  Sensitivity to different multipoles 
•  Relevance of optimizations … 
•  etc 
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Beam stay clear & GFR @ ESRF 
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Beam stay clear derived from beta 1/2 scaling 



S28 Lattice 

Zone 1 Horizontal [mm] Vertical [mm] 
Vacuum chamber aperture (radius)  15 10 
Good field region (radius) 13 9 

Zone 2 (high gradient) Horizontal [mm] Vertical [mm] 
Vacuum chamber aperture (radius) 8.3 5.5 
Good field region (radius) 7 5 

Magnet Tolerance in GFR 
2-poles DB/B < 10-4	


4-poles DG/G < 10-3	


6-poles DH/H < 10-2	
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Field quality specs to be refined 

Starting point 
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Photon beam stay clear 

Photon beam path to beamline 

Vertical pole gap important impact on magnet design 
•  Field strength  
•   field quality 
•  More difficult for high order multipole magnets 

 

Vertical 
 pole gap 



Magnet design 

Tools 
•  3D magnetic simulation  & magnetic tracking in magnet (Radia) 
• Optimization toolbox  

Design methods & studies 
 
•  Shape optimization (can be helpful) 
•  Energy efficiency  
•  Sensitivity analysis (small aperture) 
•  Interaction between magnets (compact lattice) 

J. Chavanne DLSR Workshop, SLAC 
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DL magnets 
Coming on the scene for emittance reduction (ESRF2, APS 2) 
 

•  Significant  L gradient: 0.5 T -> 0.15 T over ~ 2m 

 
 
 

Permanent Magnet based Dl magnet 
0.53 T-0.18 T, constant gapI 
Iron weight 575 kg, Pm weight 30 kg 
± 2% Filed tuning with small coil  

Resistive DL magnets 
0.53 T – 0.18 T constant gap 
1.5 kW. 1600 kg Iron +coils 
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Example: ESRF DLS 
Under study 
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DQ magnets (1) 

Two families of DQs 

B at beam [T] Gradient [T/m] Aperture [mm] 
MAX IV 0.52 8.6 28 
Sirius 0.584 7.8 28 
Diamond DDBA 0.8 14.4 30 
ESRF2 DQ1 0.54 37 38 
ESRF2 DQ2 0.42 48 38 
APS 2 0.5 38 26 
ALS II 0.78 50 24 

Low to moderate gradient 

High gradient 
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DQ magnets (2) 

Low gradient DQs: magnet derived from modified dipole 
•  Pole shaping  
•  In use in some 3GLS facilities (ex : ALBA, AS, CLS, SPEAR 3)  

High gradient DQs: magnet derived from quadrupole 
•  Pole shaping may be necessary 
•  Different designs 
•  High field on beam= large offset -> difficult GFR 

Quadrupole offset 
ESRF DQ 0.57 T-35 T/m 38mm aperture 

Half quadrupole  
ESRF DQ 0.57 T-35 T/m 20 mm bore radius 

Concept used for a 
septum  
quadrupole at Hera 
 
Can be adapted for DQs 
Easier  Vacuum 
chamber engineering 
 

Or 
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Bending magnets: X-ray sources 

•  Many Hard X-ray users on BM beamline in present high energy 
facilities 

 
•  General trend in MBAs is (obviously) to reduce the BM field 
 
•  DQs used as BM source points (ESRF, APS) with reduced field 
 

•   easier engineering 
•  Lower wall plug power 

•  Clearly conflicting with hard X-ray demand from BM beamlines 

•  ESRF has presently 0.85 T BM  (+0.4 T short soft ends) 
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Mini Wiggler insertion 

~ 0.43 T ~0.54 T 

~ 300 mm 

~ 150 mm 

Mini-wiggler or 3 poles wiggler (3PW) or wavelength shifter 
Beamline not anymore linked to BM field 
More flexibility to BL, ( Mini Insertion  Device source)  

 X-Ray BM source (DQs) 

3PW magnetic structure 

DQ2 DQ1 

DQ2 DQ1 

3PW 



Mini Wiggler insertion 



High gradient quadrupole 

G. Le Bec -- ESRF Magnets, 21/11/2013  

ESRF Quadrupole prototype 
•  High gradient QF8B 
•  100 T/m 
•  500 mm long 
• Massive iron (ARMCO type) 
•  12.5 mm bore radius 
•  1.85 kW 
•  Close to saturation @ 100 T/m 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Engineering design of QF8B  
quadrupole prototype 



J. Chavanne DLSR Workshop, SLAC 

Sextupoles 

Sextupole Parameters 
•  Bore radius : 19 mm 
•  B’’=3200 T/mm2 nominal, 4900  max. 
•  Iron Length: 200mm 
•  Outer diameter: 430mm 
•  Total length (iron+coils): 262 mm 
•  Power: 430 W  @ nominal field 
•  Min. Vertical gap between poles: 10 mm 
•  Laminated iron (Fast Orbit Correction) 

Main sextupole coil 

Corrector coil;  Horizontal and vertical orbit correction, skew quadrupole correction 

Additional version with dedicated modified yoke for photon beam stay clear (BM 
X-Ray source) 
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Pole shapes 

10-3 

Gradient error plots (Dg/g) 

4 10-3 

Optimized poles for high 
gradient quadrupole 

GFR 

Hyperbolic profile Modified profile 

Quadrupole magnet    Gradient: 100 T/m 
Bore radius: 12.5 mm 

Improve field quality in GFR 
 
 
Different (iterative) methods: ( G. Le Bec) 



Mechanical errors 

Sensitivity to random mechanical errors 
 
 
 
 

 

Mechanical tolerances. 
(Quadrupole,  100 T/m, 12.5 mm 

bore radius, at r0=7 mm.) 

Transverse misalignment. 
(Quadrupole,  100 T/m, 12.5 mm 

bore radius, at r0=7 mm.) 
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Mechanical tolerances.  
(Dipole, 0.5T, 25 mm gap.) 

 



Magnetic Measurements/ alignment 
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1- “A la MAX IV” 
 

•  Common yoke for magnets on girder 
•  Massive iron yoke 
•  Rely on precise girder machining 
•  Magnet alignment = mechanical alignment  
•  Limited effort on magnetic measurements 

MAX IV open girder 

Different strategies: 
 

Expect  outcomes very soon 



ESRF stretched wire bench 

Magnetic Measurements/ alignment 

J. Chavanne DLSR Workshop, SLAC 

 
2- Individual magnet approach 
 

•  Separated magnets 

•  Individual magnetic characterization 
•  Multipoles analysis 
•  Magnetic center 

•  Relative magnet alignment on girder 
done using stretched/vibrating wire 

•  Applicable to straight magnets only 

•  Positive experience from NSLS II & 
ESRF 



Magnet alignment on girder 
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G10 girder (cell30) equipped with the in situ measurement bench. 



Alignment approaches (G. Le Bec) 

Magnetic measurements 

In situ alignment  
•  All the magnets are aligned 

on a wire 

 
•  Transfer to the survey 

monuments 

20 m σ ≈ µ

50 m σ ≈ µ

Classical alignment 
•  Magnets are measured in lab 
•  Survey monuments are adjusted 
 
 
•  The magnets are aligned using the 

survey monuments 

•  Similar results with precise spacers 

50 m σ ≈ µ

50 m σ > µ
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Better alignment with the in situ method 
•  Alignment errors driven by the magnet position adjustment 
•  Will be mandatory for the future lattice high gradient magnets  
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Summary 

•  Aggressive quadrupoles & sextupoles  in DLSRs 

•  Small magnet  aperture  
•  Field quality seems reachable 
•  Quadrupoles~  close to saturation, still some margin on sextupoles 
•  Vertical pole gap can be a limiting factor for field quality  
•  Required mechanical tolerances may be difficult to reach (cost) 

 
•  New types of Bending Magnets 

•  DLs 
•  Feasible without doubt  

•  High gradient DQs 
•  X-ray source points for BM beamlines 
•  Trade off between high gradient & high field 

•  Prototyping will be essential 
•  No show stopper for the time being 

 1 Magnet Design 
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Summary (2) 

•  Recent  R&D  in magnetic measurements definitely helpful 

•  Stretched wire 
•  Vibrating wire 

•  Further work needed for curved magnets 

•  Alignment 

•  Rely on machining tolerance (Max IV) 

•  In situ alignment on girder using wire 

 2 Magnetic measurements/alignments 


