

## Update on APS Upgrade Plans

G. Brian Stephenson

Workshop on Diffraction-Limited Storage Rings December 9, 2013





The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

#### Enthusiastic user workshop on New Science Opportunities Provided by a Multi-Bend Achromat Lattice at the APS









October 21-22, 2013





## APS: High energy star in US x-ray facility constellation



### APS: High energy star in US x-ray facility constellation



## Coherence provides transformation in X-ray imaging

#### **Coherent Diffraction Imaging**

- Resolution limited by wavelength and sample stability – not optics.
- Recover real and imaginary parts of refractive index: magnetization, composition, bonding configuration.
- Challenge: reach atomic scale.

#### Wavelength-Resolution Ptychography

- CDI adapted to continuous samples with scanned-beam **ptychography**, resolution far better than focused X-ray spot size.
- Coherent imaging techniques to approach wavelength resolution from improved coherent flux



MBA will enable in operando, multimodal imaging approaching atomic resolution.

## Fast fluctuations with XPCS

#### X-ray photon correlation spectroscopy

• Chemical, magnetic, and structural fluctuations

## Accessible time scale proportional to (coherent flux)<sup>2</sup>

 100 to 1000-fold increased brightness improves time resolution by 10<sup>4</sup> to 10<sup>6</sup>

## MBA enables ns-resolution studies of nm-scale fluctuations in

- Reaction-diffusion
- Self-assembly
- Domain wall motion
- Complex order parameters





| Time to probe 1 ns fluctuations: |               |  |  |  |  |
|----------------------------------|---------------|--|--|--|--|
| Today:                           | 50,000 hours  |  |  |  |  |
| MBA + modern BL:                 | 5 hr to 3 min |  |  |  |  |

# A new regime of scattering and spectroscopy with nanobeams: nanoXRF, nanoXRD, nanoXAS, nanoRIXS

#### X-ray fluorescence nano-tomography 3D elemental mapping of functional mesostructures



#### nanoRIXS

## understanding coupled excitations in heterogeneous materials and nanostructures



#### nanoXRD

Formation, structure, and function of the solid-electrolyte interface in batteries



nanoXRF

Understanding elemental composition in heterogenous nanostructures



CMOS semiconductor

MBA will vastly expand the capability and capacity of scanned x-ray probes: high flux at resolution approaching 1 nm.

# Observing individual point defects inside functioning devices with single-atom sensitivity

#### Opportunity

- Quantum spintronics: cryptography, sensing, and quantum computers
- Manipulate interacting arrays of "designer atoms"

#### **Gains From APS MBA Lattice**

- Single-atom sensitivity for fluorescence
- Point defect strain fields at nm resolution; Bragg CDI measurements

Spin states of single point defects in widebandgap semiconductors



Why do properties of each defect differ?



D. D. Awschalom et al., Science, 2013

Now: structure and composition of point defects are uncharacterized APS MBA upgrade: gives sensitivity to strain and composition of single atoms through factor of 100 to 1,000 improvement in brightness

## Materials deformation revealed with coherent x-rays

#### Opportunity

- Strain tensor mapping inside of deforming material, including fluids and glasses, by using space-time cross-correlation analysis of x-ray speckle (XPCS)
- 3-D variation of full strain and stress tensors inside materials evolving in real time under loading

#### **Gains from APS MBA Lattice**

- Open up studies into ns range
- Sub-micron spatial resolution



Speckle shifts superimposed on scattering from a 20 micron region of a rubber sample undergoing flow in a stress-strain cell. Shifts are scaled by 200. (M. Sutton, unpublished)

Now: New coherence-based techniques being developed with coarse resolution APS MBA upgrade: First direct view of molecular flow will be enabled by factor of 10,000

#### to 1,000,000 improvement

## Microcrystallography of biological macromolecules

#### Opportunity

- Nanocrystal studies enabled
- Microcrystals studies routine
- Membrane proteins studies routine

#### **Gains from APS MBA Lattice**

- Accelerate drug discovery; 10<sup>2</sup>-10<sup>3</sup> increase in brightness opens study of nanocrystals
- Improve S/N and resolution for small (0.5 5 μm), inhomogeneous and/or weakly scattering crystals



2012 Nobel Prize in Chemistry



 $\beta_2$  adrenergic receptor-Gs protein complex

Kobilka & Weis labs

APS MBA upgrade: mosaicity factor of 10 improvement; intensity at sample factor of 10,000 improvement



## **Defect interactions in semiconductor devices**

#### Opportunity

- Accelerate discovery; potential heroic
   1.5-year experiments done in 3 days
- Expand semiconductor functionality; remove limiting defects
- Improve performance

#### Gains from APS MBA Lattice

 Characterize buried nanoscale structure at high sensitivity, *in situ/operando*, with a large field of view, in *real time*





C.K. Hu et al., IEEE 42<sup>nd</sup> IRPS, 222 (2004)

CZTS solar cell Todorov *et al.,* Adv. Mater. **22**, E156 (2010).

Interfacial defects dictate performance, both in nanoelectronics and photovoltaics

**Now:** 35 nm spot size with 1x10<sup>9</sup> ph/s **APS MBA upgrade:** 5 nm with 5x10<sup>11</sup> ph/s by improvements in brightness and optics

## APS MBA upgrade, 5 nm spatial resolution: revolutionary

2-ID-D today, 120 nm spatial resolution: "work horse"



26-ID nanoprobe today, 35 nm spatial resolution: "cutting edge"



 Cannot resolve W, Cu structures, As doping

Cannot detect Al

- Cannot resolve W structures, As doping
- Cannot detect Al
- Resolve Cu structures

Simulation of MBA upgrade, 5 nm spatial resolution: "revolution"



Resolve Cu, W
structures, and As doping
Detect and resolve Al

### **MBA accelerator design development**



## **Preliminary APS MBA parameters**

Preliminary parameters for a possible APS MBA lattice

| Quantity             | Symbol                             | APS   | MBA | MBA | Units          |
|----------------------|------------------------------------|-------|-----|-----|----------------|
| Beam energy          | E                                  | 7     | 6   | 6   | $\mathrm{GeV}$ |
| Effective emittance  | $\epsilon_0$                       | 3100  | 60  | 60  | $\mathrm{pm}$  |
| Beam Current         | Ι                                  | 100   | 200 | 200 | mA             |
| Number of Bunches    | $N_b$                              | 24    | 48  | 324 |                |
| Emittance ratio      | $\kappa = \epsilon_y / \epsilon_x$ | 0.016 | 1.0 | 0.1 |                |
| Horizontal emittance | $\epsilon_x$                       | 2500  | 30  | 60  | $\mathrm{pm}$  |
| Vertical emittance   | $\epsilon_y$                       | 40    | 30  | 6   | pm             |

Note that intrabeam scattering has been ignored

16

## Preliminary APS MBA fill patterns

- Total beam current is expected to be 200 mA
- Fill patterns with 48 to 324 bunches will be possible
- Various timing patterns should be possible with up to 4.2 mA/bunch

| Total current      | Ι          | 200 | 200 | mA            |
|--------------------|------------|-----|-----|---------------|
| Number of bunches  | $N_b$      | 48  | 324 |               |
| Bunch current      | $I_b$      | 4.2 | 0.6 | mA            |
| Bunch rate         | $f_b$      | 13  | 88  | MHz           |
| Rms bunch duration | $\sigma_t$ | 70  | 18  | $\mathbf{ps}$ |

## Prototype superconducting undulator operational

- 30-cm prototype SCU has been providing beam to users at Sector 6 ever since it was installed
- Exceeds design specs, very reliable, and already outperforms our standard undulator A at 85 keV
- 1-m SCU under construction

Prototype superconducting undulator installed in APS, December 2012



## An MBA lattice at APS: a new generation



