ALS Overview of AP issues facing DLSR lattice and component design David Robin

Workshop on Diffraction Limited Storage Rings, SLAC

with input from

C. Steier, H. Tarawneh, B. Hettel, M. Borland, L. Nadolski. ESRF

ALS Outline

- Enabling technologies and challenges
- Lattice optimization
- Intrabeam scattering
- Injection Swap-out or Accumulation
- Collective Effects
- New facilities versus upgrades

Advanced Light Source

AS Overview of enabling technologies for DLSRs

- Lattice design evolution (MBA)
- Improved accelerator simulation tools
- Compact magnet technology
- Compact vacuum (NeG) technology
- Faster injection kickers
- In-situ magnet measurement and alignment methods
- Mode damped RF cavities and highly stable power sources
- High performance X-ray optics
- High performance IDs (superconducting, Delta, etc.)
- more ...

AS Fundamental challenges of low emittance DLSR

from M. Borland, GRC 8/13

Office of Science

Inescapable fact

- To reduce the amplitude of dispersive orbits, must focus more frequently and more strongly
- Focusing (quadrupole) elements have chromatic aberrations
 - Sextupole magnets added to correct these
 - Introduces higher order chromatic and geometric aberrations
 - More sextupoles or octupoles added to correct these...

Stronger focusing leads to difficult non-linear dynamics

- Poor "momentum aperture" \Rightarrow reduced lifetime \Rightarrow frequent injection
- Poor "dynamic aperture" \Rightarrow greater difficulty injecting \Rightarrow on-axis injection?

1: M. Borland, IPAC12, 1013-1017.

2: M. Borland, "Can APS Compete with the Next Generation," 2002; L. Emery et al., PAC03, 256.

ALS Fundamental challenges of DLSR – cont.

Intra-beam scattering (IBS)

- Multiple electron-electron scattering in a bunch
- Leads to increased emittance and energy spread

Possible mitigations:

- Many low-intensity bunches
- Round beams
- Bunch lengthening system
- Damping wigglers

Beam instabilities

- **Transverse:** resistive wall, ion trapping in multi-bunch mode, single bunch TMCI
 - Beam blow-up \Rightarrow brilliance reduction
 - transverse beam oscillations \Rightarrow beam losses
- Longitudinal: primarily from cavity HOMs
- Possible mitigations: mode-damped cavities, smooth chamber transitions, low-Z chamber material, low charge/bunch, longer bunches, feedback

X-ray optics

- Advances in optics needed to preserve coherence, handle high power densities

ALS Start with lattice optimization

from M. Borland, GRC 8/13

Inescapable fact

- To reduce the amplitude of dispersive orbits, must focus more frequently and more strongly
- Focusing (quadrupole) elements have chromatic aberrations
 - Sextupole magnets added to correct these
 - Introduces higher order chromatic and geometric aberrations
 - More sextupoles or octupoles added to correct these...
- Stronger focusing leads to difficult non-linear dynamics
 - − Poor "momentum aperture" \Rightarrow reduced lifetime \Rightarrow frequent injection
 - Poor "dynamic aperture" \Rightarrow greater difficulty injecting \Rightarrow on-axis injection?

1: M. Borland, IPAC12, 1013-1017.

2: M. Borland, "Can APS Compete with the Next Generation," 2002; L. Emery et al., PAC03, 256.

ALS Multi-bend achromats pave way to the diffraction limit

Lattice design of ALS evolved from a triple-bend achromats (TBA) to a multi-bend (9BA) achromat for ALS-II. Result is a large reduction in emittance, $\varepsilon_x = \sigma_x \sigma'_x$

Advanced Light Source

D. Robin SLAC-DLSR Workshop, 2013-12-09

7

Office of Science

Development of accelerator simulation tools

D. Robin SLAC-DLSR Workshop, 2013-12-09

Office of Science

A Strategies for optimizing the lattice

Goal of obtaining desired emittance and betas with acceptable dynamic and momentum apertures

- Lots of different and powerful techniques
 - Simultaneous optimization of linear and nonlinear design
- Also enhanced computing power is allowing
 - Exploration of larger number of parameters
- Decide on whether swap-out is acceptable
 - Allows to push the parameters further
 - Other possible advantages

Advanced Light Source

Kicker technology could limit the fill patterns -> timing modes

ALS Obtaining small emittance with sufficiently large dynamic aperture

Sexupoles in higher dispersion region

Advanced Light Source

ALS Beam lifetime

- Need sufficient lifetime to maintain high average current
- Vacuum Lifetime
 - Small apertures (dynamic and momentum) require low vacuum for sufficient lifetime

Touschek lifetime

- Small momentum apertures and dense bunche will decrease lifetime
 However very small emittances with sufficiently
- However very small emittances with sufficiently large momentum apertures may result in an increase in lifetime.
 - Are we getting into this regime?

ALS Adjustability of the lattice

- Require stong combined function magnets
- Couple dipole and quadrupole
- Reduces the flexibility of the operating condition
- Gain flexibility may require backleg or moving magnets

Combined Function Magnets

Advanced Light Source

ALS Fundamental challenges of DLSR – cont.

Intra-beam scattering (IBS)

- Multiple electron-electron scattering in a bunch
- Leads to increased emittance and energy spread

Possible mitigations:

- Many low-intensity bunches
- Round beams
- Bunch lengthening system
- Damping wigglers

Advanced Light Source

D. Robin SLAC-DLSR Workshop, 2013-12-09

ENERGY

Office of Science

.....

AS Mitigating the effects of intrabeam scattering

Reducing the beam density

- Fill as many bunches as possible
 - Limited by the injection scheme, ions, or desired timing modes
 - Push towards DC has benefits for certain techniques such as ARPES and XPCS.
- Lengthening the bunches using harmonic cavities
 - Limited by fill patterns / phase transients
- Operate with rounder beams
 - Increasing the vertical beamsizes by coupling or dispersion or ...
 - What is the impact on the dynamics?

.....

ENERGY

Office of Science

3rd Harmonic Cavities (see J. Byrd's talk)

- Need aggressive bunch lengthening (factor >=4)
 - To keep IBS emittance growth in check
 - Increase instability thresholds
- Difficult because of amplitude/ phase transients
- Mitigation:
 - s/c?, low frequency?, many bunch trains, small gaps, ...
- Background:
 - Max-IV think they can achieve this
 - s/c 3HC in use at several European facilities

Figure 8. Simulation results for ALS conditions with 17% gap in the fill pattern.

Advanced Light Source

A S Injection – Accumulation or on-axis Swap-out

• Accumulation

- Traditional injection scheme
- Requires sufficiently large dynamic aperture

May not be possible for those lattices with small dynamic apertures

On-Axis Swap-out

- Bunch is replaced with a fresh bunch or bunch train
- Recover or dump replaced bunches
 - Added complexity versus stress on the injection system
- Requires fast kickers to minimize gaps in fill pattern
 - May impact the range of fill patterns

Swap-out injection was first proposed by M. Borland for possible APS upgrades

Advanced Light Source

D. Robin SLAC-DLSR Workshop, 2013-12-09

.....

17

ALS Swap-out choices

Choose to swap-out

- Single bunch
- Bunch train
- Full beam

Impacts

- Kicker parameters (rise time, flat top)
- Stress on the injector
- Current in the accumulator
- Possible fill patterns
- Transparency of injection

Brightness evolution: inject 0.1*I_{beam} 1.01 1 **Normalized Brilliance** 0.98 0.96 0.96 2000 eV 1000 eV 500 eV • 100 eV 0.94 0.93 0 10 20 30 40 50 60 Time [msec]

ALS TMCI vs. Bunch Lengthening & Chromaticity

Because of the small momentum compaction factor and the small synchrotron tunes, the single bunch instabilities could present a problem

Distributed vacuum pumping by NEG is foreseen with high transverse impedance in the high frequency range.

□ What are the required single bunch currents for a given ring?

AS Heat loading on beam optics is an important issue

- Maximize brightness will increase the angular power density
- Need to preserve the brightness in both planes.
- The first optic (that has the highest heat load) is particularly important
- Situation becomes worse when going to larger K values to access lower photon energies

Angular Power Density vs. Brightness

The power density is an important issue for the low photon energies. The performance and the cost effectiveness are a trade-off between **Brightness**, **Power density & Slope error.**

Parameters @ 2 GeV & 3 GeV: $\epsilon_{x,y}$ =50 pm.rad, $\beta_{x,y}$ =1 m, L_{ID} = 4m and I = 500 mA

Advanced Light Source

ALS Insertion device

- Higher performance
 insertion devices will allow
 increased performance
 - Superconducting, Delta, etc.

Delta undulator prototype

- A. Temnykh

Advanced Light Source

D. Robin SLAC-DLSR Workshop, 2013-12-09

Bifilar Helical Undulator

SC undulator development at APS (E. Gluskin et al.), LBNL (S. Prestemon et al.), and elsewhere

ALS Other issues

- Timing modes and short pulse
 - What timing modes are desirable
 - What pulse lengths
 - What fill patterns
 - Capatible with crabbing or other techniques
- Smooth transition for existing facilities
 - Preserving / Upgrading beamlines
 - Minimizing downtime

DLSR design optimization

SLAC

ALS Concluding remarks

- Lot of challenges some but not all mentioned in this talk
- None appear to be showstoppers
- Plenty of opportunity for optmization
- Many are challenges are common
- Large and growing community

Great opportunity for collaboration

DLSRs: why now? – cont.

Compact magnet and vacuum technology

 NEG-coated vacuum chambers enable small apertures to enable high magnet gradients

Pioneered at CERN, used extensively at Soleil, and adopted for MAX-IV and Sirius MBA lattices

 Precision magnet pole machining for small aperture magnets, combined function magnets, tolerance for magnet crosstalk

DLSRs: why now? - cont.

Other advances in accelerator and light source technology

- Fast kickers for swap-out injection
- Sub-micron e- BPMs and orbit feedback
- Accelerator and beam line component mechanical stabilizing systems
- Micron resolution single pass BPMs (non-linear lattice tuning)
 - "In-situ" magnet measurement and alignment methods (e.g. NSLS-II)
- Mode-damped RF cavities (fundamental and harmonic)
- Delta undulator
 Highly stable solid state RF power sources
 Delta undulator
- High performance IDs (superconducting Delta, etc.)

Advanced Light Source

D. Robin SLAC-DLSR Workshop, 2013-12-09

SPring-8 concept based on NSLS-II vibrating wire method - K. Soutome

ALS NEG coated chamber (Cosmic) example)

Advanced Light Source

D. Robin SLAC-DLSR Workshop, 2013-12-09

3)13:(6)

Office of Science

