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X-ray Brightness

 The quality of a beam is expressed by the brightness

 Approximate description of single-electron undulator 
radiation distribution (“intrinsic” or “diffraction” distribution)1 

 The electron beam is described by (simplest case)

where q=x or y and the emittances and beta functions are 
nominally free parameters

(simplification)

1P. Elleaume, in Wigglers, Undulators, and Their Applications, 2003.

N.B.: there is disagreement about the exact numerical factors. E.g., some authors set the emittance and beta function to 
half the values shown here.
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X-ray Brightness

 To maximize brightness, we minimize the denominator

 Minimized when

q=x,y

Figure courtesy R. Hettel
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X-ray Brightness

 We are “diffraction-limited” when in addition to matching 
beta functions

 In this case the coherent fraction is nearly 50%
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How Close are We Now?

 For an undulator filling a typical 5-m-long straight

which is feasible, though not always easy.
 Emittance is another matter

 For typical 3rd-generation rings

so we are several orders of magnitude away from DL 
performance in horizontal



M. Borland, Design Considerations and Trade-Offs for 4GSR Light Sources, SLAC, 12/13 7

Example of Conflicts in Linear Optics Tuning

Horizontal beta function @ID Vertical beta function @ID

Natural emittance (pm)

Minimizing the emittance is
incompatible with reducing
horizontal beta function to the
ideal value of ~1.5 m

Best to optimize brightness
directly for a specific photon
energy
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Contemporary Storage Ring Light Sources

 Conventional storage rings (e.g., APS) typically have double-bend 
(Chasman-Green) configuration

~27.6m

Straight
section

Bend
magnet

Quadrupole
magnets

Sextupole
magnets

 Bends: force the beam into a closed path
 Quadrupoles: provide focusing
 Sextupoles: correct focusing aberrations
 Straight sections all-important for

modern rings
– Typically 20~50, each 5~10 m long
– Undulators/wigglers in most
– Rf cavities, injection pulsed magnets  
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Quantum Excitation of Electron Beams

 Classical expression for synchrotron radiation gives average 
energy loss in a bending field

 Radiation emission also has a random character governed 
by quantum mechanics
– Different electrons emit differently in

identical conditions
 Hence, bending will diminish beam

brightness
– Directly by increasing

energy spread
– Indirectly by increasing 

bend-plane emittance
 This “quantum excitation”

is opposed by “radiation damping”
resulting in a well-defined
equilibrium emittance

See, e.g., M. Sands, SLAC-121 (1972).
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Emittance Scaling

 Emittance is governed by1

where N
s
=#sectors and N

d
=#dipoles/sector

 Simple explanation
– Emittance is driven by randomness of photon emission 

in presence of dispersive (energy-dependent) orbits
– Breaking up dipoles and putting focusing (quadrupoles) 

between the parts allows tightly controlling the 
magnitude of dispersive orbits

1: J. Murphy, NSLS Light Source Data Booklet
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From Double to Multi-Bend Achromats

 Rings today have N
d
=2 or (more rarely) 3

 Several groups proposed N
d
>3 lattices in 1990s1

– 7BA should have ~40x lower emittance than today’s 2B(A) 
lattices

– Typically emittances should drop from 2-4 nm to 50-100 pm 
• Diffraction-limited performance up to 1-2 keV
• Much higher brightness and coherence over entire spectrum

1: Einfeld et al., NIM A 335, 1993; Joho et al., EPAC 94;: Einfeld et al., PAC95; Kaltchev et al., PAC95.

All figures courtesy C. Steier, LBNL.
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Challenges of Low Emittance

 Inescapable fact
– To reduce the amplitude of dispersive orbits (“dispersion 

function”), must focus more frequently and more strongly
 Focusing (quadrupole) elements have chromatic 

aberrations
– Sextupole magnets added to correct these
– Stronger focusing means there is more chromaticity to 

correct
– In addition, sextupole strength is inversely proportional to 

dispersion
 Strong sextupoles introduce strong higher order 

aberrations
– More sextupoles or octupoles added to correct these...
– This is a downward spiral if we are not careful

 In addition, there are collective phenomenon that get 
worse
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Simplified Ring Model

 To illustrate difficulties and scaling, created a 
simplified ring model
– No straight sections for IDs
– Simple repetitive cell with “TME” configuration
– Gradually increase the number of cells while keeping 

circumference fixed at 600 m
– Energy of 4.5 GeV

Lattice functions for N
d
=280

1/N
d

3 
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Scaling of Magnet Strengths 

 Emittance decrease is nice, but...
– Gradients grow like N

d
2

– Average dispersion drops like 1/N
d

2

– Sextupole strength grows like N
d

3 

 Need smaller magnet apertures
to produce these strengths

 NB: exponents reduced if we scale
ring circumference with N

d

1/N
d

1.9 N
d

2.9

N
d

3.2

N
d

1.8

N
d

2.4
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Scaling of Magnet Apertures 

 Assume maximum pole-tip field of 1 T
 Compute the required magnet bore radius R

 Conclusion: for ultra-low emittance, need ~10mm bores!
– Vacuum bore must be even smaller

Maximum dipole/quadrupole bore Maximum sextupole bore

~1/N
d

2 ~1/N
d

1.5
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Scaling of Alignment Requirements

 Misaligned magnets perturb the beam
– Misaligned quadrupoles → orbit kicks
– Misaligned sextupoles → focusing and coupling errors

 Orbit amplification is generally about the same
 Beta function modulation is much worse per unit misaligment

– For DBA → 7BA, we'd need ~10-30x better alignment of sextupoles
– E.g., 5-15 microns instead of 150

N
d

0.4

N
d

-0.3

N
d

1.8

N
d

2.7
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Nonlinear Dynamics

 Strength of chromatic correction sextupoles increases like N
d

3 

 Based on this, if we aren't careful we'll see
– Dynamic acceptance decreases like 1/N

d
3 

• E.g,. 10-20mm DA goes to 0.25-0.5 mm
for DBA → 7BA

• Conventional injection impossible

– Second order chromaticities
increase ~N

d
3

• ~1/N
d

1.5 drop in momentum acceptance

• Very short beam lifetime

 Improved methods of arranging sextupoles
and other nonlinear elements are the
primary means of averting catastrophe
– MAX-IV uses 5 sextupole and 3 octupole families1

– ESRF-II design uses special linear optics to cancel
sextupole kicks, plus octupoles2

Scaling argument due to L. Emery.1: S. Leemann et al., PRSTAB 12, 120701 (2009).
2: L. Farvacque et al., IPAC13, 79 (2013).
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Dynamic Acceptance and Injection Requirements

 Present-day rings use accumulation
– Works only if dynamic acceptance is large enough, typ. >10 mm
– Requires high-quality magnets out to large apertures

 If emittance is aggressively tuned, DA may be very small
– Can only inject on-axis
– By Liouville's theorem, old bunch is unavoidably extracted
– Accumulation is impossible

 This “swap-out”1 method is unworkable unless we have
– Injector that can deliver at least a few nC in a bunch (or train), which is 

easy
– Kickers with fast (~5-10 ns) rise and fall times

 Not everyone designing a 4GSR assumes swap-out, but it allows
– More aggressive performance
– Small horizontal gaps on IDs
– Lower quality (easier, cheaper) magnets

 Historical note:  “swap-out” mode was used by the first dedicated 
SR source, TANTALUS2

1: M. Borland, “Can APS  Compete with the Next Generation,” 2002; L. Emery et al., PAC03, 256.
2: E. Rowe et al., Part. Accel. 4, 211 (1973).
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Scaling of Longitudinal Parameters

 Scaling of energy spread very weak
 Assuming constant rf acceptance,

bunch length also scales weakly
– Decreases, which is undesirable

 Synchrotron tune drops strongly,
which suggests a problem with
head-tail instabilities

 Indications for coupled-bunch
thresholds are mixed

1/N
d

0.4

1/N
d

1.9
1/N

d

1.5
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Scaling of Collective Instabilities

 Electromagnetic interaction with the vacuum chamber may
– Limit total current (coupled-bunch instability)
– Limit bunch current (single-bunch instability)
– Blow up the energy spread, bunch length, or emittance (single-bunch 

instability)

 Assuming constant impedance (optimistic)
– MWI threshold goes down rapidly, but can be moderated by deliberate 

bunch lengthening
– TMCI looks innocuous, at least on these assumptions

MWI (energy-spread blow-up)

1/N
d

2.4

TMCI (single-bunch limit)
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Scaling of Transverse Impedance
 Geometric impedance

– This results from changes in the chamber dimensions, e.g.,
• Transition from arc to ID chamber
• Bellows liners, flanges, 
• BPMs

– Changes rapidly with chamber dimensions: typ. 1/g2 to 1/g4

 Resistive impedance
– This results from finite conductivity of chamber walls
– 1/g3 dependence on chamber gap

 Gaps scale like 1/N
d

2, so impedance would appear to scale quite 

strongly
 Mitigate problem by

– Smoother chamber (adiabatic changes in g, smaller flange gaps, ...)
– Higher-conductivity material (Cu instead of Al or SS)
– Smaller average beta functions
– Feedback systems, bunch lengthening, positive chromaticity

– Detailed studies at APS1 indicate this is workable for N
d
=7

• Even so, expect ~5-fold drop in maximum single-bunch current

1: Y.-C. Chae, private communication; also, Y.-C. Chae et al., PAC07, 



M. Borland, Design Considerations and Trade-Offs for 4GSR Light Sources, SLAC, 12/13 22

Intrabeam scattering (IBS)
 Multiple scattering in a bunch

– Increases emittance, energy
spread

– Fights beneficial E2 scaling of
 emittance

 To deal with this, may use
– Many low-intensity bunches
– Increased vertical emittance
– Bunch lengthening system
– Higher beam energy

1% coupling

10% coupling 100% coupling
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Intrabeam scattering (IBS)

 IBS prevents taking advantage of the beneficial E2 scaling of 
emittance

 Particularly true if we want low  coupling to maximize x-ray 
brightness

 For lower-energy 4GSRs, strong motivation to run with many weak 
bunches
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Touschek scattering

 Hard electron-electron scattering leading to large longitudinal 
momentum kicks
– Particle loss if outside local momentum acceptance

 Together with the momentum aperture, Touschek scattering rate 
largely determines beam lifetime 

 Scattering rate increases as bunch density increases
– Motivates having many weak, long bunches, and large vertical 

emittance

1/N
d

3.4

1/N
d

3.3

1 nC/bunch
20mm bunch length

Constant ±3% momentum acceptance

15 nC/bunch
20mm bunch length

Constant ±3% momentum acceptance
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Operation with “Round Beams”

 Present rings have κ=ε
y
/ε

x
≪1

– Improves brightness
– Helpful for accumulation with small gap chambers

 When we make ε
0 

very small, κ≪1 is less beneficial

– Closer to diffraction limit in both planes
– Drives up IBS and Touschek scattering rates

 Better approach is “round beams” and swap-out, κ≈0.1 to 1

Normal advantage of running low
coupling is less apparent when there
are few bunches, since IBS causes
emittance to grow.

Example assumes ~10 keV photons
from a 5-m undulator.
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Summary of Scaling Studies

 Increasing the number of dipoles provides low emittance, 
but there are concerns

 Large number of dipoles, quadrupoles, and sextupoles 
needed

 Quadrupole and sextupole strengths very high
 Reduced dynamic and momentum acceptance
 Small magnet and vacuum bore necessary
 Potential for large increase in impedance
 Reduced instability thresholds
 Emittance blow-up and short lifetime for low-coupling, few-

bunch modes
 Increased sensitivity to alignment and vibration

 Although none of these seem fatal, they can't be treated 
lightly and need detailed study
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Are 4th-Generation Rings Within Reach?

 Top-up proves that short beam lifetime is workable (APS, SLS, ...)
 Routine, precision correction of accelerator optics (NSLS)
 Demonstration of few pm vertical emittance (e.g., SLS, PETRA-III, 

ESRF, SPring-8, ...)
 Advances in simulation fidelity and computational capabilities
 Advances in optimization techniques, including genetic algorithms
 New magnet technology (e.g., MAX-Lab) allows lower-cost, more 

tightly-packed lattices 
 New vacuum technology (e.g., CERN, SOLEIL, MAX-Lab) allows 

narrow beam pipes and strong, small-bore magnets
 Development of ultra-precise alignment methods (NSLS-II)
 Demonstration of sub-micron and sub-microradian beam stability
 Demonstration at PETRA-III of 160 pm emittance at 3 GeV
 Realization that “swap-out” injection reduces aperture 

requirements, allows aggressive tuning, allows “poor”-quality 
magnets (APS)
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Design Your Own Ring

 A free Android app allows exploring storage ring scaling
– Also has synchrotron radiation calculations, FELs, top-up/swap-out, etc.
– Search for “Michael Borland TAPAs” on the Google store

Ring scaling Undulator radiation Magnet estimation
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Conclusions

 Scaling analysis shows that there are challenges for 
4th-generation rings
– Magnet strengths are high
– Magnets are closely packed
– Vacuum chambers must be narrow
– Collective effects are more challenging
– Alignment is more challenging
– Operating modes and methods may need to 

change
 We’ve learned a great deal since 3rd-generation 

sources began operating ~20 years ago
– Much of the needed technology is available
– 4th generation rings are within reach
– There's even an app for it
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