

Design Considerations and Trade-Offs for 4th-Generation Storage Ring Light Sources

Michael Borland December 9, 2013 Accelerator Systems Division Argonne National Laboratory

Outline

- X-ray brightness
- Origin of emittance in storage rings
- Storage ring scaling and challenges of low emittance
 - Emittance
 - Magnet parameters
 - Nonlinear dynamics
 - Collective effects
 - Alignment
- Summary

X-ray Brightness

The quality of a beam is expressed by the brightness

$$B \propto \frac{N_{\gamma}}{(\Delta \lambda / \lambda) \Delta t \Sigma_x \Sigma_{x'} \Sigma_y \Sigma_{y'}}$$
 (simplification)

 Approximate description of <u>single-electron</u> undulator radiation distribution ("intrinsic" or "diffraction" distribution)¹

$$\epsilon_r = \sigma_r \sigma_{r'} \approx \frac{\lambda}{2\pi} \qquad \beta_r = \frac{\sigma_r}{\sigma_{r'}} \approx \frac{L_u}{\pi}$$

The electron beam is described by (simplest case)

$$\sigma_q = \sqrt{\epsilon_q \beta_q} \qquad \qquad \sigma_{q'} = \sqrt{\frac{\epsilon_q}{\beta_q}}$$

where q=x or y and the emittances and beta functions are nominally free parameters

¹P. Elleaume, in *Wigglers, Undulators, and Their Applications*, 2003.

N.B.: there is disagreement about the exact numerical factors. E.g., some authors set the emittance and beta function to half the values shown here.

M. Borland, Design Considerations and Trade-Offs for 4GSR Light Sources, SLAC, 12/13

X-ray Brightness

To maximize brightness, we minimize the denominator

$$\Sigma_q \Sigma_{q'} = \sqrt{\epsilon_q \beta_q + \epsilon_r \beta_r} \sqrt{\frac{\epsilon_q}{\beta_q} + \frac{\epsilon_r}{\beta_r}} \qquad q=x,y$$

Minimized when

X-ray Brightness

 We are "diffraction-limited" when in addition to matching beta functions

$$\epsilon_{x,y} \leq \frac{1}{2}\epsilon_r \approx \frac{\lambda}{4\pi}$$

In this case the coherent fraction is nearly 50%

$$f_c = \frac{\epsilon_r^2}{\sum_x \sum_{x'} \sum_y \sum_{y'}} \gtrsim 44\%$$

How Close are We Now?

For an undulator filling a typical 5-m-long straight

 $\beta_r = 1.6 \mathrm{m}$

which is feasible, though not always easy.

Emittance is another matter

$$\begin{array}{lll} \epsilon_q[pm] & \lesssim & \frac{100}{E_p[keV]} \\ \epsilon_q[pm] & \lesssim & 8\lambda[\mathring{A}] \end{array} & \Rightarrow & 1 \text{ keV} & \to & \epsilon_q \lesssim 100 \text{ pm} \\ \end{array}$$

For typical 3rd-generation rings

$$\epsilon_x : [1, 5]$$
nm $\epsilon_y : [1, 40]$ pm

so we are several orders of magnitude away from DL performance in horizontal

Example of Conflicts in Linear Optics Tuning

Vertical beta function @ID 39 belayO (m) 38 3.2 37 3.0 ν, (1/(2π)) 2.8 36 2.6 35 2.4 34 2.2 33 2.0 32 100102106 108 ()4 $\nu_{\star} (1/(2\pi))$

> Minimizing the emittance is incompatible with reducing horizontal beta function to the ideal value of ~1.5 m

Best to optimize brightness directly for a specific photon energy

Contemporary Storage Ring Light Sources

 Conventional storage rings (e.g., APS) typically have double-bend (Chasman-Green) configuration
 Quadrupole

- Bends: force the beam into a closed path
- Quadrupoles: provide focusing
- Sextupoles: correct focusing aberrations
- Straight sections all-important for modern rings
 - Typically 20~50, each 5~10 m long
 - Undulators/wigglers in most
 - Rf cavities, injection pulsed magnets

Quantum Excitation of Electron Beams

- Classical expression for synchrotron radiation gives average energy loss in a bending field
- Radiation emission also has a random character governed by quantum mechanics
 - Different electrons emit differently in identical conditions
- Hence, bending will diminish beam brightness
 - Directly by increasing energy spread
 - Indirectly by increasing bend-plane emittance
- This "quantum excitation" is opposed by "radiation damping" resulting in a well-defined equilibrium emittance

See, e.g., M. Sands, SLAC-121 (1972).

Emittance Scaling

Emittance is governed by¹

$$\epsilon_0 = F(\nu, \text{cell}) \frac{E^2}{(N_s N_d)^3} \propto \frac{E^2}{C^3}$$

Fixed cell type

_೧

$$\epsilon_x = \frac{\epsilon_0}{1+\kappa} \qquad \epsilon_y = \kappa \epsilon_x$$

where $N_s = \#$ sectors and $N_d = \#$ dipoles/sector

- Simple explanation
 - Emittance is driven by randomness of photon emission in presence of dispersive (energy-dependent) orbits
 - Breaking up dipoles and putting focusing (quadrupoles) between the parts allows tightly controlling the magnitude of dispersive orbits

1: J. Murphy, NSLS Light Source Data Booklet

From Double to Multi-Bend Achromats

All figures courtesy C. Steier, LBNL.

- Rings today have N_d=2 or (more rarely) 3
- Several groups proposed N_d>3 lattices in 1990s¹
 - 7BA should have ~40x lower emittance than today's 2B(A) lattices
 - Typically emittances should drop from 2-4 nm to 50-100 pm
 - Diffraction-limited performance up to 1-2 keV
 - Much higher brightness and coherence over entire spectrum

1: Einfeld et al., NIM A 335, 1993; Joho et al., EPAC 94;: Einfeld et al., PAC95; Kaltchev et al., PAC95.

M. Borland, Design Considerations and Trade-Offs for 4GSR Light Sources, SLAC, 12/13

Challenges of Low Emittance

Inescapable fact

- To reduce the amplitude of dispersive orbits ("dispersion function"), must focus more frequently and more strongly
- Focusing (quadrupole) elements have chromatic aberrations
 - Sextupole magnets added to correct these
 - Stronger focusing means there is more chromaticity to correct
 - In addition, sextupole strength is inversely proportional to dispersion
- Strong sextupoles introduce strong higher order aberrations
 - More sextupoles or octupoles added to correct these...
 - This is a downward spiral if we are not careful
- In addition, there are collective phenomenon that get worse

Simplified Ring Model

- To illustrate difficulties and scaling, created a simplified ring model
 - No straight sections for IDs
 - Simple repetitive cell with "TME" configuration
 - Gradually increase the number of cells while keeping circumference fixed at 600 m
 - Energy of 4.5 GeV

Scaling of Magnet Strengths

- Emittance decrease is nice, but...
 - Gradients grow like N_d^2
 - Average dispersion drops like $1/N_d^2$
 - Sextupole strength grows like N³_d
- Need smaller magnet apertures to produce these strengths
- NB: exponents reduced if we scale ring circumference with N_d

Scaling of Magnet Apertures

- Assume maximum pole-tip field of 1 T
- Compute the required magnet bore radius R

$$R_{\rm Q} = \frac{B}{B'}$$
 $R_{\rm S} = \sqrt{\frac{2B_{\rm tip}}{B''}}$

- Conclusion: for ultra-low emittance, need ~10mm bores!
 - Vacuum bore must be even smaller

Scaling of Alignment Requirements

- Misaligned magnets perturb the beam
 - Misaligned quadrupoles \rightarrow orbit kicks
 - Misaligned sextupoles \rightarrow focusing and coupling errors
- Orbit amplification is generally about the same
- Beta function modulation is much worse per unit misaligment
 - For DBA \rightarrow 7BA, we'd need \sim 10-30x better alignment of sextupoles
 - E.g., 5-15 microns instead of 150

Nonlinear Dynamics

- Strength of chromatic correction sextupoles increases like N³
- Based on this, if we aren't careful we'll see
 - Dynamic acceptance decreases like $1/N_d^3$
 - E.g., 10-20mm DA goes to 0.25-0.5 mm for DBA \rightarrow 7BA
 - Conventional injection impossible
 - Second order chromaticities increase $\sim N_d^{3}$
 - $\sim 1/N_d^{1.5}$ drop in momentum acceptance
 - Very short beam lifetime
- Improved methods of arranging sextupoles and other nonlinear elements are the primary means of averting catastrophe
 - MAX-IV uses 5 sextupole and 3 octupole families¹
 - ESRF-II design uses special linear optics to cancel sextupole kicks, plus octupoles²
 - 1: S. Leemann et al., PRSTAB 12, 120701 (2009).
 - 2: L. Farvacque et al., IPAC13, 79 (2013).

 $x'' + k^2 x = \frac{1}{2}mx^2$

 $(Ax)'' + k^2(Ax) = \frac{1}{2}(N_d^3m)(Ax)^2$

 $A \sim \frac{1}{N_{\star}^3}$

Dynamic Acceptance and Injection Requirements

- Present-day rings use accumulation
 - Works only if dynamic acceptance is large enough, typ. >10 mm
 - Requires high-quality magnets out to large apertures
- If emittance is aggressively tuned, DA may be very small
 - Can only inject on-axis
 - By Liouville's theorem, old bunch is unavoidably extracted
 - Accumulation is impossible
- This "swap-out"¹ method is unworkable unless we have
 - Injector that can deliver at least a few nC in a bunch (or train), which is easy
 - Kickers with fast (~5-10 ns) rise and fall times
- Not everyone designing a 4GSR assumes swap-out, but it allows
 - More aggressive performance
 - Small horizontal gaps on IDs
 - Lower quality (easier, cheaper) magnets
- Historical note: "swap-out" mode was used by the first dedicated SR source, TANTALUS²

1: M. Borland, "Can APS Compete with the Next Generation," 2002; L. Emery et al., PAC03, 256. 2: E. Rowe et al., Part. Accel. 4, 211 (1973).

Scaling of Longitudinal Parameters

- Scaling of energy spread very weak
- Assuming constant rf acceptance, bunch length also scales weakly
 - Decreases, which is undesirable
- Synchrotron tune drops strongly, which suggests a problem with head-tail instabilities
- Indications for coupled-bunch thresholds are mixed

Scaling of Collective Instabilities

- Electromagnetic interaction with the vacuum chamber may
 - Limit total current (coupled-bunch instability)
 - Limit bunch current (single-bunch instability)
 - Blow up the energy spread, bunch length, or emittance (single-bunch instability)
- Assuming constant impedance (optimistic)
 - MWI threshold goes down rapidly, but can be moderated by deliberate bunch lengthening
 - TMCI looks innocuous, at least on these assumptions

Scaling of Transverse Impedance

- Geometric impedance
 - This results from changes in the chamber dimensions, e.g.,
 - Transition from arc to ID chamber
 - Bellows liners, flanges,
 - BPMs
 - Changes rapidly with chamber dimensions: typ. 1/g² to 1/g⁴
- Resistive impedance
 - This results from finite conductivity of chamber walls
 - 1/g³ dependence on chamber gap
- Gaps scale like 1/N²_d, so impedance would appear to scale quite strongly
- Mitigate problem by
 - Smoother chamber (adiabatic changes in g, smaller flange gaps, ...)
 - Higher-conductivity material (Cu instead of Al or SS)
 - Smaller average beta functions
 - Feedback systems, bunch lengthening, positive chromaticity
 - Detailed studies at APS¹ indicate this is workable for $N_d = 7$
 - Even so, expect ~5-fold drop in maximum single-bunch current

1: Y.-C. Chae, private communication; also, Y.-C. Chae et al., PAC07,

Intrabeam scattering (IBS)

- Multiple scattering in a bunch
 - Increases emittance, energy spread
 - Fights beneficial E² scaling of emittance
- To deal with this, may use
 - Many low-intensity bunches
 - Increased vertical emittance
 - Bunch lengthening system
 - Higher beam energy

Intrabeam scattering (IBS)

- IBS prevents taking advantage of the beneficial E² scaling of emittance
- Particularly true if we want low coupling to maximize x-ray brightness
- For lower-energy 4GSRs, strong motivation to run with many weak bunches

Touschek scattering

- Hard electron-electron scattering leading to large longitudinal momentum kicks
 - Particle loss if outside local momentum acceptance
- Together with the momentum aperture, Touschek scattering rate largely determines beam lifetime
- Scattering rate increases as bunch density increases
 - Motivates having many weak, long bunches, and large vertical emittance

Operation with "Round Beams"

- Present rings have $\kappa = \epsilon_v / \epsilon_x \ll 1$
 - Improves brightness
 - Helpful for accumulation with small gap chambers
- When we make ε_0 very small, $\kappa \ll 1$ is less beneficial
 - Closer to diffraction limit in both planes
 - Drives up IBS and Touschek scattering rates
- Better approach is "round beams" and swap-out, $\kappa \approx 0.1$ to 1

Normal advantage of running low coupling is less apparent when there are few bunches, since IBS causes emittance to grow.

Example assumes ~10 keV photons from a 5-m undulator.

Summary of Scaling Studies

- Increasing the number of dipoles provides low emittance, but there are concerns
- Large number of dipoles, quadrupoles, and sextupoles needed
- Quadrupole and sextupole strengths very high
- Reduced dynamic and momentum acceptance
- Small magnet and vacuum bore necessary
- Potential for large increase in impedance
- Reduced instability thresholds
- Emittance blow-up and short lifetime for low-coupling, fewbunch modes
- Increased sensitivity to alignment and vibration
- Although none of these seem fatal, they can't be treated lightly and need detailed study

Are 4th-Generation Rings Within Reach?

- <u>Top-up</u> proves that short beam lifetime is workable (APS, SLS, ...)
- Routine, <u>precision correction</u> of accelerator optics (NSLS)
- Demonstration of <u>few pm vertical emittance</u> (e.g., SLS, PETRA-III, ESRF, SPring-8, ...)
- Advances in <u>simulation</u> fidelity and computational capabilities
- Advances in <u>optimization</u> techniques, including genetic algorithms
- New <u>magnet technology</u> (e.g., MAX-Lab) allows lower-cost, more tightly-packed lattices
- New <u>vacuum technology</u> (e.g., CERN, SOLEIL, MAX-Lab) allows narrow beam pipes and strong, small-bore magnets
- Development of <u>ultra-precise alignment</u> methods (NSLS-II)
- Demonstration of sub-micron and sub-microradian <u>beam stability</u>
- Demonstration at PETRA-III of <u>160 pm emittance at 3 GeV</u>
- Realization that <u>"swap-out" injection</u> reduces aperture requirements, allows aggressive tuning, allows "poor"-quality magnets (APS)

Design Your Own Ring

- A free Android app allows exploring storage ring scaling
 - Also has synchrotron radiation calculations, FELs, top-up/swap-out, etc.
 - Search for "Michael Borland TAPAs" on the Google store

(+ \(\approx\) ⁹⁹ \(\begin{bmatrix} 89 \\ 9 \\ 9 \\ 18^{\matrix} 18^{\matrix}	* N as 11 87% = 10:10
TAPAs: Toolkit for Acceler	ator Physics on Androids
Storage Ring Scaling	
Reference Ring	
ESRF_II 👻	
Energy (GeV):	6
Cells:	40
Circumference (m):	1055
Emittance (nm):	0.0727
Energy spread (%):	0.0929
Mom. compaction:	5.6294E-5
En. Loss/Turn (MeV):	2.3688
Horizontal Damping Time (ms):	12.761
Longitudinal Damping Time (ms):	11.123
Overvoltage:	1.5
Rf Freq. (MHz):	351.794371
Harmonic Number:	1238
Rms Duration (ps):	13.24
Bucket HH (%):	3.1604

Ring scaling

Undulator radiation

Magnet estimation

🛨 🥱 🏶 👭 🔀 18º	🖇 🔃 👍 📶 87% 🗖 10:07
TAPAs: Toolkit for Accele	rator Physics on Androids
Iron-Dominated Multipole Magnets	
Туре	
Sextupole 👻	
n:	2
Kn (1/m^(n+1)):	300
Beam Energy (GeV):	7
Half gap (mm):	12
Bn (T/m^n):	7004.846
BTip (T):	0.5043
NI (kAmp*Turns):	1.6054

Conclusions

- Scaling analysis shows that there are challenges for 4th-generation rings
 - Magnet strengths are high
 - Magnets are closely packed
 - Vacuum chambers must be narrow
 - Collective effects are more challenging
 - Alignment is more challenging
 - Operating modes and methods may need to change
- We've learned a great deal since 3rd-generation sources began operating ~20 years ago
 - Much of the needed technology is available
 - 4th generation rings are within reach
 - There's even an app for it