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“Best” Solution from Optimization
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Best Solution from Optimization

Start

 Touschek lifetime is computed 
with 10% coupling, 200 mA, 
432 bunches, and 20 mm 
bunch length, which requires a 
harmonic cavity

 DA is only large enough for on-
axis injection

 LMA is above 2%, similar to 
APS today
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Swap-out Concept

 As noted, the DA is so small that only on-axis injection is possible
 Assuming we inject on-axis, DA requirements are greatly reduced

– Large enough to accommodate injected beam without losses
• Injected beam rms sizes are less than 300 microns

– Large enough to give sufficient gas scattering lifetime
• ~1mm is sufficient for a 30 hour lifetime

 On-axis injection implies a new mode called “swap-out”1,2

– Stored bunch or bunch train is extracted and dumped
– New bunch or bunch train is put in its place
– Injector must supply sufficient charge in one shot to completely fill 

bunch or bunch train

 For APS MBA at 200 mA, captured charge must be
– 2.3 nC/bunch in 324-bunch mode --- easy
– 4.5 nC/bunch in 162-bunch mode --- seems workable with new rf ramp 

(C. Yao)
– 15 nC/bunch in 48-bunch mode --- very challenging

 In addition to the injector requirements in 48-bunch mode, swap-
out is challenging for kicker technology

1: M. Borland, “Can APS Compete with the Next Generation?” APS Retreat, May 2002.
2: L. Emery et al., Proc. PAC 2003, 256-258.
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Swap-Out Algorithm

 Fill from zero by injecting at the maximum rate
– If a shot is dropped (no current), repeat it
– Stop when desired number of bunches are filled

 After filling, begin cycle of waiting and replacing individual bunches
 Wait time is

where D is the allowed fractional droop in bunch current, τ is the lifetime, 
and N

b

the number of bunches
 If a shot is dropped, it is made up as soon as possible

– I.e., if we extract the existing bunch but fail to inject the new bunch, we 
wait only sufficient time to prepare a new bunch

 For APS MBA
– Assume average rate of charge capture into the ring is limited to 8 nA 

• E.g., 16 nC captured every 2 s, corresponding to 20 nC in PAR with 80% 
efficiency into the ring

– Dropped shot is repeated after minimum N*0.5 s interval such that sufficient 
time is available to accumulate required charge in PAR
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Swap-Out Algorithm

 Injection interval is determined by the beam lifetime, which is 
dominated by the Touschek lifetime

 Simulated Touschek lifetime (including effects of intrabeam 
scattering) is approximately proportional to N

b

– Injection interval roughly depends only on emittance ratio κ
– To be conservative, used the 10th-percentile predicted lifetime
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Swap-Out Simulations

 Simulated ~24 hours of swap out with various parameters
– 200 mA in different numbers of bunches
– Two different emittance ratios (0.1 and 1.0)
– Lifetime derived from other simulation data for 20 mm bunch length

 Simulation includes realistic effects
– Uniformly-distributed random variation in charge captured

• Charge captured fluctuates about the average value needed (i.e., may 
fluctuate above or below requirement)

• Characterized by parameter f
i
, which gives the full fractional range of the 

variation

– Possibility of randomly dropped shots (extraction but no injection)
• Each shot has a 1% probability of being dropped
• This includes make-up shots

 Analyzed simulation results to determine likely range of beam 
current as a function of various parameters
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Swap-Out Simulation Results

 Here we vary the 
randomness level for the 
captured charge

 Used 48 bunches, 100% 
emittance ratio, 1% drop-
out rate

 In terms of average 
current variation, results 
look good

 Here we vary the number 
of bunches with 3% 
variation in captured 
charge

 Again, results are good 
for all cases
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Swap-Out Simulation Results

 Here we vary the 
randomness level for the 
captured charge, with 
κ=1 and 1% drop-out rate

 Rms variation in bunch 
current is generally well 
controlled

 Here we look at details of 
the beam current vs time 
following the fill from zero

 The transients result from 
evolution of the bunch 
pattern after changing 
from fast filling to the 
slower swap-out interval
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Injection Tracking Simulations

 We performed tracking simulations of on-axis injection
– Simulate rramping to 6 GeV in booster
– Inject beam into ring with errors in lattice and injection trajectory
– Look at capture efficiency

 Booster simulations were done as a function of momentum offset
– Present value is -0.9% and was used for injection into the ring
– Introduced a fictitious skew quadrupole to couple the emittances

• Did not fully couple as this seemed to inflate the sum of the emittances
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Injection Tracking Simulations

 Simulated 10 error ensembles for storage ring
– Included 20mm ID round apertures in arcs, 20mm x 6mm ellipses in ID 

straights
 Tracked for 1500 turns (sufficient to determine capture fraction)
 Scanned x and x’ errors at center of injection straight
 Tolerances are determined with reference to 90% contours

– About ±700 μm (rms size of beam is ~200 μm)
– About ±500 μrad (rms divergence of beam is ~150 μrad)

• Large compared to kicker strength of 3 mrad1

Contours of 10th percentile capture fraction Contours of median capture fraction

1: A. Xiao et al., Proc NAPAC13, WEPSM13.
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Injection Transients

 Emittance transient will be seen following a swap-out event
– Injected beam has much larger emittance than stored beam
– Injected beam may have mismatch or trajectory error, leading to emittance 

growth from decoherence
– Nearby bunches may be rattled by the injection kickers, leading to 

emittance growth from decoherence
 Requirements on the trajectory are described above

– Amounts to a few percent stability of the kicker amplitude
– Trade-offs possible among different components (e.g., mismatch vs 

trajectory)
 If we allow equal contributions from the new bunch and the rattled 

bunches, we find a tolerance of 250 μrad on the kicks to the rattled 
bunches
– This is large compared to peak kick of ~3 mrad
– Probably no need to make it this sloppy

 Full-beam emittance after injection and decoherence is

Undisturbed bunches n
r
 rattled bunches Injected bunch
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Injection Transients

 The emittance decays exponentially back to the equilibrium value 
with time constant τ

x,y
/2, where τ

x
=13.5 ms and τ

y
=21.3 ms

 Required time to get to 10% dilution is
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Injection Layout (Extraction Similar)

D1

D2

Thick Septum
Thin

Septum Stripline Kickers

A. Xiao

Quads

5.8m

Kickers must provide ~1 mrad per 
meter of insertion length, which is
challenging.

Alternative configurations also being 
explored (e.g., LSS).
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A. Xiao
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